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The first part of the paper gives a brief overview of the development of the
arithmetic of probability laws from H. Cramér’s paper on the components of
Gaussian law to the investigations of Yu.V. Linnik in the 1950s. The second
part describes I.V. Ostrovskii’s contribution to the arithmetic of probability
laws and the theory of analytic characteristic functions.

Key words: Probability law, characteristic function, infinitely divisible
law, class I0, arithmetic of probability laws

Mathematical Subject Classification 2020: 60E07, 60E10

1. Cramér, Lévy, Khinchin, Raikov

The arithmetic of probability laws is a branch of probability theory that
appeared in the 1930s. Already the first results and facts demonstrated its close
connection to the theory of entire functions. The present paper aims to describing
the contribution of I.V. Ostrovskii in the development of this field during 1960s–
1990s.

Let us consider the semigroup of probability laws on the real line with respect
to the operation of ordinary convolution

(P1 ∗ P2)(E) :=

∫
R
P1(E − x)P2(dx).

The units of this semigroup are the laws δa, a ∈ R, that assign the unit mass to
the point a. A component of a law P is any law P1 for which there exists a law P2

such that P1 ∗ P2 = P . The laws δa (they are called degenerate) are components
of each law.

Recall that the characteristic function of the law P is a function of a real
variable t defined by

ϕ(t, P ) =

∫
R
eixt P (dx). (1.1)

In 1936, G. Cramér [6] proved that every non-degenerate component of a
Gaussian law is again a Gaussian law. This result led to the birth of a new
theory, the arithmetic of probability laws.
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The proof given by G. Cramér, for the first time in probability theory,
was complex-analytic and used a fairly deep and relatively recently established
Hadamard’s factorization theorem on representation of entire functions of finite
order. J. Hadamard used this theorem to prove the asymptotic law for distribu-
tion of prime numbers.

Cramér’s proof of this theorem is as follows. Let P1 be a non-degenerate
component of a Gaussian law P . The tail of the law P ,

TP (x) := P (R \ (−x, x)),

decreases rapidly as x→∞, approximately like exp(−cx2), c > 0. Using this, it is
easy to deduce that the tail TP1(x) of P1 also decreases at infinity as exp(−c1x2),
c1 > 0. This means that the characteristic function ϕ(t, P1) of the law P1 is an
entire function of order 2. In terms of characteristic functions, the equality P1 ∗
P2 = P means that ϕ(t, P1)ϕ(t, P2) = ϕ(t, P ) for all complex numbers t. Since
ϕ(t, P ) does not vanish in the complex plane, the same is true for ϕ(t, P1). So,
ϕ(t, P1) is an entire function of order 2 without zeros. By Hadamard’s theorem,
ϕ(t, P1) = exp(Q(t)), where Q(t) is a polynomial of degree 2. From the simplest
properties of characteristic functions, it follows that this polynomial is equal to
−γt2 + iβt, where γ > 0 and β is a real number.

Soon after the publication of Cramér’s article, D.A. Raikov [80], who was at
that time a graduate student of A.Ya. Khinchin, proved that the Poisson laws
possess a similar property: All non-degenerate components of a Poisson law are
also Poisson laws. Moreover, the proof (following Cramér’s one) was also complex-
analytic and used Hadamard’s theorem. Thus, already the first theorems of the
new field indicated its close connection to the theory of entire functions.

In the same year A.Ya. Khinchin [40] proved two fundamental theorems of
the arithmetic of probability laws. To formulate them, let us present necessary
definitions. A non-degenerate law P is called indecomposable if given a represen-
tation in the form of convolution P = P1 ∗ P2, it follows that one of the laws P1,
P2 is degenerate. The theorems of Cramér and Raikov show that Gaussian and
Poisson laws do not have indecomposable components. The class of all such laws
is denoted by I0. A law P is said to be infinitely divisible if for every natural
number n it can be represented as the convolution of n identical laws, P = Qn ∗
Qn ∗ · · · ∗Qn. The class of all infinitely divisible laws is denoted by I. Obviously,
it contains the Gaussian and Poisson laws.

Theorem 1.1 (The first Khinchin theorem). Each non-degenerate law P can
be represented as a finite or infinite convolution

P = P0 ∗ P1 ∗ P2 ∗ · · · ,

where P0 is a law that does not have indecomposable components (i.e. P0 ∈ I0)
and P1, P2, . . . are indecomposable laws.

Note that in the above representation, P0 or all laws P1, P2, . . . may be absent.
Infinite convolution should be understood in the sense of convergence of the
distribution of finite convolutions.
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This theorem can be considered as an analogue of the fundamental theorem of
arithmetic. However, unlike the latter, the representation of the law in Khinchin’s
theorem is, generally speaking, not unique.

Theorem 1.2 (The second Khinchin theorem). Every law that has no inde-
composable components is infinitely divisible, that is, I0 ⊂ I.

As Khinchin and Raikov showed, the inclusion in this theorem is strict.
A description of class I was obtained in the 1930s in terms of characteristic

functions. A law P is infinitely divisible if and only if its characteristic function
admits the representation (Lévy’s representation)

ϕ(t, P ) = exp

(
iβt− γt2 +

∫
R\{0}

(
eitx − 1− itx

1 + x2

)
λ(dx)

)
, (1.2)

where β ∈ R, γ ≥ 0, λ is a Borel measure on R \ {0} such that∫
R\{0}

x2

1 + x2
λ(dx) <∞.

This is equivalent to the following (Khinchin’s representation):

ϕ(t, P ) = exp

(
iβt+

∫
R

(
eitx − 1− itx

1 + x2

)1 + x2

x2
χ(dx)

)
, (1.3)

where β ∈ R, χ is a Borel measure on R such that χ(R) < ∞. The measures
λ and χ are called the Lévy and Lévy-Khinchin spectral measures, respectively.
The Gaussian law is obtained when in formula (1.2) we have γ > 0 and λ is the
zero measure; and in formula (1.3), when χ = γδ0. The Poisson law is obtained
when in formula (1.2) one has γ = 0, and λ = bδc for some b > 0, c 6= 0, and in
formula (1.3) when χ = bδc with the same conditions on b and c.

It is a natural problem to describe the class I0. One can check that an
equivalent to given above definition of I0 is as follows: A law P ∈ I0 if and only
if all (including P itself) components of the law P are infinitely divisible. Thus,
the description of class I0 is reduced to the description of those measures χ in
representation (1.3), for which the following holds: The characteristic function
of each components P1 of the law P can be represented in the form (1.3) with a
measure χ1, which is majorized by the measure χ.

After the works of P. Lévy and D.A. Raikov in 1937–1938 on components of
finite convolutions of Poisson laws, until the mid-1950s, there was no progress in
the study of class I0. In particular, it was not known whether the convolution
of the Gaussian and Poisson laws belongs to class I0. (That the class I0 is not a
semigroup was known from the results of Lévy and Raikov on decompositions of
convolutions of Poisson laws.) The characteristic function of the convolution of
Gaussian and Poisson laws

exp(−γt2 + λ(eit − 1))
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is an entire function of infinite order. If there were no Gaussian component (γ =
0), then using the substitution z = eit (as in the proof of Raikov’s theorem), the
problem would be reduced to the case of order 1. But if γ 6= 0, then this method
does not work. New approaches were required. They were found by Yu.V. Linnik
in the second half of the 1950s.

2. Linnik

In 1957, an article was published [47] by Yu.V. Linnik, containing a proof
that the convolution of Gaussian and Poisson laws belongs to class I0. The proof
was very technical (25 journal pages), but the methods used made it possible to
discover new general facts about I0. The following was proved in [48]:

Theorem 2.1. If an infinitely divisible law P has a Gaussian component (i.e.
γ 6= 0 in representation (1.2)) and belongs to class I0, then the spectral measure
λ is purely discrete:

suppλ = {µ−n }∞n=−∞ ∪ {µ+n }∞n=−∞,

where µ−n < 0, µ+n > 0 satisfy

−∞ < · · · < µ−n+1 < µ−n < · · · < 0, 0 < · · · < µ+n < µ+n+1 < · · · <∞,

and are such that the ratios µ+n+1/µ
+
n and µ−n+1/µ

−
n are integers.

Therefore, if an infinitely divisible law belongs to class I0 and has a Gaussian
component, then its spectral Lévy measure has a very special form. A class of
infinitely divisible laws (with or without Gaussian component), whose spectral
Lévy measure satisfies the conditions specified in Theorem 2.1 is called the Linnik
class and denoted by L.

The question arises if it is true that if P ∈ L then P ∈ I0? As Yu.V. Linnik
showed [48], the answer is positive for those laws from L whose spectral Lévy
measure decreases rapidly at infinity:

λ({µ±n }) < exp
(
− exp(|µ±n |1+α)

)
, (2.1)

for some α > 0 and all sufficiently large n. In the book [49], he conjected that
condition (2.1) can be replaced by a weaker one:

λ({µ±n }) = O
(
exp(−K(µ±n )2)

)
, n→∞, ∀K > 0. (2.2)

His other hypothesis is that there are no laws of class I0 with a continuous Poisson
spectrum. (The Poisson spectrum of an infinitely divisible low P is the set of all
points x ∈ R\{0} such that the measure λ of each arbitrarily small neighborhood
of x is positive.)

The book [49] also poses a question related to Marcinkiewicz’s theorem. To
formulate Marcinkiewicz’s theorem, some preparations are needed. In general,
given a probability law P , then speaking about smoothness properties of its
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characteristic function ϕ(t, P ), one can only say that it is uniformly continuous
on the real line. However, if the tail TP (x) = P (R \ (−x, x)) of P decreases
sufficiently fast as x→∞, then the function ϕ(t, P ) can be extended by formula
(1.1) to entire function in the complex t-plane. How quickly can its maximum
modulus increase? Excluding the case ϕ(t, P ) ≡ 1 (i.e. P is concentrated at
origin), we can only say that the growth of the entire characteristic function is
not lower than the order one, normal type.

In 1938, Marcinkiewicz [54] discovered that there are restrictions on the
growth of an entire characteristic function from above, if it is known that its
order is finite and if it has few zeros in the sense that the point 0 is a Borel
exceptional value. (Recall that this means that the index of convergence of the
zeros of a function is strictly less than its order; the index of convergence ρ1
of zeros {ak} is the infimum of the numbers ρ′ for which the series

∑
k |ak|−ρ

′

converges (each zeros is counted taking into account its multiplicity)).

Theorem 2.2 ([54]). If the convergence index ρ1 of the zeros of an entire
characteristic function of finite order ρ is strictly less than ρ, then ρ ≤ 2.

This estimate is sharp, as the example of Gaussian law shows.

It follows from Marcinkiewicz’s theorem that if exp(f(t)) is an entire char-
acteristic function of finite order, then f(t) is a polynomial of degree no greater
than 2 (and thus the corresponding law is Gaussian or degenerate). There exist
characteristic functions of the form exp(f(t)) where f(t) is an entire function
of order 1 of normal type (an obvious example is the characteristic function of
Poisson’s law exp(λ(eit−1))). Yu.V. Linnik posed the question whether there are
entire characteristic functions of the form exp(f(t)), in which f(t) has a minimal
type at order 1 [49, p. 255]. Answers to these and other questions by Yu.V. Lin-
nik were the content of many of I.V. Ostrovskii’s works in 1960s–1970s on the
arithmetic of probability laws.

3. Research related to the Linnik hypothesis in connection with
Marcinkiewicz’s theorem

In 1962, I.V. Ostrovskii [55, 57] answered Linnik’s question related to
Marcinkiewicz’s theorem, obtaining results on the growth of entire functions
of a special form, more general than entire characteristic functions of the form
exp(f(t)). Let us denote by R̃ the class of entire functions of complex variable
t = τ + iη (τ, η ∈ R) (not necessarily characteristic functions of probability laws),
satisfying the condition

|ϕ(τ + iη)| ≤M(|η|, ϕ), ∀ τ, η ∈ R, (3.1)

where M(r, ϕ) = max{|ϕ(t)| : |t| = r}. The class R̃ is wider than the class R of
ridge functions introduced by D. Dugué, defined by the condition

|ϕ(τ + iη)| ≤ |ϕ(iη)|, ∀ τ, η ∈ R. (3.2)
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Theorem 3.1 ([55, 57]). Let F (w) and f(t) be entire functions where F (w)
is not identically constant. Let ϕ(t) = F (f(t)) and ϕ(t) ∈ R̃. Then

1) either f(t) is a polynomial of degree not greater than 2;

2) or the function f(t) has a growth of at least order 1 normal type, i.e.

lim sup
r→∞

r−1 logM(r, f) > 0. (3.3)

Thus, regardless of the form of function F , inequality (3.1) imposes restric-
tions on the growth of the function f(t). For the allowed growth, a gap appears
between the polynomial degree 2 and the order 1 of normal type.

For F (w) = exp(w), Theorem 3.1 gives an answer to Yu.V. Linnik’s question:
Entire functions of order one minimal type without zeros cannot be characteristic
functions. In article [63], I.V. Ostrovskii posed a conjecture that one may improve
the estimate for the growth of f in the second part of Theorem 3.1 by replacing
in formula (3.3) the upper limit with lower limit. The validity of this hypothesis
was proven by his student V.V. Zimoglyad in [89]. Moreover, it turned out that
if the function ϕ(t) = F (f(t)) satisfies the conditions of Theorem 3.1 and f(t) is
not a polynomial, then the smallest possible growth of f(t) can only be realized
on functions that grow regularly in the following sense: either

lim inf
r→∞

r−1 logM(r, f) =∞,

or

0 < lim inf
r→∞

r−1 logM(r, f) = lim sup
r→∞

r−1 logM(r, f) <∞.

Theorem 3.1 contains only a special case of Marcinkiewicz’s theorem, when
the function ϕ(t) does not vanish. In this regard, the following Theorem 3.2 is
interesting, in which ϕ(t) is allowed to have a faster growth than that of finite
order.

Theorem 3.2 ([55,57]). Let f(t) be an entire transcendental function of finite
order ρ, and g(t) be an entire function satisfying the condition

lim sup
r→∞

(log r)−1 log log logM(r, g) < ρ if ρ > 0;

lim sup
r→∞

(log r)−1 log logM(r, g) <∞ if ρ = 0.

Let ϕ(t) = g(t) exp(f(t)) ∈ R̃. Then the growth of f(t) is not lower than order 1
normal type.

Articles [55, 57] gave rise to a number of studies on generalizing and finding
other variants of Marcinkiewicz’s theorem. At the same time, in some papers the
condition of being a characteristic function was replaced by the weaker condition
of being a ridge function, since Marcinkiewicz’s theorem holds in the class of ridge
functions, that is wider than the class of characteristic functions. I.V. Ostrovskii
together with his student I.P. Kamynin in [36] studied the question of whether
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the condition ρ1 < ρ in Marcinkiewicz’s theorem can be replaced by the condi-
tion δ(0, ϕ) > 0, where δ(0, ϕ) is the Nevanlinna defect at the origin of entire
characteristic function ϕ. (For the concept of Nevanlinna defect, see [23].) The
answer turned out to be negative, because, as shown in [36],

For every 2 < ρ < ∞ there is an entire ridge function ϕ(t) of order ρ such
that for every ε > 0 the inequality holds

δ(0, ϕ) ≥ cερ−(2+ε)ρ, (3.4)

where the constant cε does not depend on ρ.
However, if we assume that δ(0, ϕ) = 1, then the statement of Marcinkiewicz’s

theorem remains valid.

Theorem 3.3 ([36]). If ϕ is an entire ridge function of finite lower order
such that condition δ(0, ϕ) = 1 is satisfied, then the order of ϕ does not exceed 2.

In this regard, in [36] the problem is set to find for each ρ > 2 the quantity

C(ρ) = sup δ(0, ϕ), (3.5)

where the supremum is taken over the set of all entire ridge functions of order ρ.
A.E. Eremenko [10] proved that Teorem 3.3 has no analogue for exceptional

values in the sense of Valiron.
The condition ρ1 < ρ in Marcinkiewicz’s theorem imposes a restriction on the

absolute values of the zeros of ϕ. As A.A. Goldberg and I.V. Ostrovskii showed
in [24], the statement of Marcinkiewicz’s theorem remains valid if this condition
is replaced by a condition that imposes a restriction only on the arguments of
the zeros. Instead of the condition ρ1 < ρ, their work assumes that all zeros of ϕ
are real.

Theorem 3.4 ([24]). Let ϕ(t) be an entire ridge function of finite order
having only real zeros. Then its order does not exceed 2. Moreover, it admits the
representation

ϕ(t) = C exp
(
− γt2 + iβt

)∏
k

(
1− t2

a2k

)
,

where C ∈ C, γ ≥ 0, β ∈ R, ak > 0,
∑

k a
−2
k <∞.

In particular, this theorem shows that the condition
∑

k a
−2
k <∞ character-

izes the zero sets lying on the real axis of entire characteristic functions of finite
order.

The requirement that the order of the function ϕ be finite in Theorem 3.4
cannot be discarded, since there are entire ridge functions of infinite order without
zeros. But it can be weakened somewhat by imposing an additional restriction
on the absolute values of zeros:

If ϕ is an entire ridge function such that all its zeros are real, ρ1 <∞ and

lim
r→∞

r−1 log logM(r, ϕ) = 0,



I.V. Ostrovskii’s Work on Arithmetic of Probability Laws 339

then Theorem 3.4 remains valid.
In the same paper a hypothesis is put forward:
If the entire ridge function has only real zeros ak, then the condition

∑
k a
−2
k <

∞ is satisfied (zeros are counted with multiplicities).
The work [24] gave rise to a number of articles by I.V. Ostrovskii and his

students. For example, in [34] a result is obtained that contains both the
Marcinkiewicz theorem and the Goldberg–Ostrovskii theorem.

Theorem 3.5 ([34]). Let ϕ be an entire ridge function of order ρ and let, for
some B > 0, the convergence index of its zeros lying outside the strip |Im t| < B,
be strictly less than ρ. Then ρ ≤ 2.

In the same article, analogues of Marcinkiewicz’s theorem were obtained for
the ridge functions that are analytic in a half-plane.

In [76], in order to generalize Marcinkiewicz’s theorem, I.V. Ostrovskii used a
different, simpler method than the one used in [57]. The method is based on in-
tegral representation formulas for analytic functions in the half-plane. Moreover,
the theorems obtained by this method contain all previously obtained general-
izations. One of the consequences of the results of article [76] can be formulated
as follows.

Theorem 3.6. Let ϕ be an entire characteristic function without zeroes that
satisfies the condition

lim inf
r→∞

r−1 log logM(r, ϕ) = 0. (3.6)

Then ϕ is the characteristic function of a Gaussian law, possible degenerate.

Recently A.E. Eremenko and A.E. Fryntov [11] obtained the following stability
theorem for Theorem 3.6:

Let ϕ be an entire characteristic function of a random variable X with mean
0 and variance 1. Assume that ϕ(t) 6= 0 in a strip |Re t| < A and satisfies
condition (3.6). Then the distance in the uniform metric between the distribution
functions of X and the standard Gaussian random variable can be estimated
above by the value C/A, where C is an absolute constant.

Another stability theorem for the Marcinkiewicz-Ostrovskii theorem is proved
in [9].

I.V. Ostrovskii with his students A.M. Vishnyakova and A.M. Ulanovskii [88]
gave a short and elementary solution to Linnik’s problem. The result obtained
is stronger than the one on non-existence of characteristic functions of the form
exp(f(t)), where f(t) is entire function of order one minimal type. It is related to
analogues of Marcinkiewicz’s theorem for entire ridge functions with restrictions
on the arguments of the zeros.

Theorem 3.7 ([88]). Assume an entire ridge function ϕ(t) satisfies condi-
tion (3.6) and does not vanish in the angles | arg t± π/2| < α, for some 0 < α ≤
π/2. Then the order ρ of function ϕ is finite.

An exact upper estimate for the value of order ρ in terms of α was found
in [20,86,87].
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4. Relationship between L and I0

Article [60] of I.V. Ostrovskii contains a new short proof of the theorem
Yu.V. Linnik on the components of the composition of Gaussian and Poisson
laws. Its beginning, as in the proof of Yu.V. Linnik, is based on the concept
of ridgeness. It is used to obtain preliminary estimates on the real part of the
logarithm of the characteristic function of the component of the original law
(convolution of the Gaussian and Poisson laws). Starting from a certain place,
Yu.V. Linnik used real analysis, while I.V. Ostrovskii noticed that the real part
of logarithm of the characteristic function of a component, which is a harmonic
function on the real plane, for one variable admits analytic continuation to the
whole complex plane, and is an entire function to which it is convenient to apply
the Phragmen-Lindelöf theorem for an angle. The problem is quickly reduced to
solving simple finite-difference equations, and the proof turned out to be trans-
parent and relatively short. Although it, of course, cannot be called elementary,
it made it possible to make a significant progress in the problem of describing
class I0. In [56,61], I.V. Ostrovskii proved the validity of Linnik’s conjecture (see
(2.2)) with an improvement in the estimate in (2.2) by replacing the quantifier
∀ with the quantifier ∃. All further studies of the question, under what condi-
tions P ∈ L implies P ∈ I0, were based on the approach proposed in [56, 61].
In work [58] I.V. Ostrovskii showed that condition (2.2) with the quantifier ∃
can be further weakened by imposing an additional condition on the law P ∈ L,
requiring that it’s support is a lattice, i.e. it lies on some arithmetic progression.
(In particular, this means that χ((−a, a)) = 0 for some a > 0, where χ is the
Lévy-Khinchin spectral measure.) It suffices to require that

Tχ(x) = o (exp(−2(x/d) log(x/d))) , x→ +∞, (4.1)

where d is the smallest difference of arithmetic progressions containing the sup-
port of P .

The answer to Yu.V. Linnik’s question, whether the inclusion L ⊂ I0 is true,
was given in [25] by A.A. Goldberg and I.V. Ostrovskii. It turned out to be
negative. It was shown in [25] that the infinite convolution of Poisson laws with
the characteristic function

exp

( ∞∑
k=1

exp
(
− 2k

)(
exp

(
2kit

)
− 1
))

,

obviously belonging to the class L, possesses non-infinitely divisible components,
and therefore does not belong to the class I0.

Later, students of I.V. Ostrovskii, A.E. Fryntov and G.P. Chistyakov [21]
proved, following mainly the reasoning from [50, p. 191–211], that the assump-
tion on the support in the theorem of I.V. Ostrovskii [58] can be removed, and
condition (4.1) can be replaced with the following one

Tχ(x) = O
(
exp(−Kx log x)

)
, x→ +∞, (4.2)

for some K > 0.
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In 1987, G.P. Chistyakov [2, 3] showed that condition (4.2) can be replaced
by the condition

Tχ(x) = O
(
exp(−Kx)

)
, x→ +∞,

for every K > 0, which means that the characteristic function of the law P is
entire. This condition can no longer be improved, as the discussed above example
of A.A. Goldberg and I.V. Ostrovskii shows.

5. On infinitely divisible laws without Gaussian component

It follows from results of Raikov and Lévy that if an infinitely divisible law P
does not have Gaussian component, then the condition P ∈ L is not necessary
for it to belong to class I0. But by 1965 it was not known whether the Poisson
spectrum needed to be finite or countable. In [59] I.V. Ostrovskii described two
broad classes of laws from I0 with continuous Poisson spectrum.

Theorem 5.1 ([59]). Every infinitely divisible law without Gaussian compo-
nent whose Poisson spectrum lies on an interval [a, b] satisfying 0 < a < b ≤
2a <∞, belongs to class I0.

Theorem 5.2 ([59]). Every infinitely divisible law without Gaussian compo-
nent whose Poisson spectrum is a closed bounded set with linearly independent
over Q points lying on (0,∞) belongs to class I0.

From each of these theorems it follows that there are infinitely divisible laws
of class I0 with a continuous Poisson spectrum. It also follows from Theorem 5.1
that every infinitely divisible law is finite or infinite convolution of lows from class
I0.

Work [59] initiated numerous studies aimed at generalization of its results. In
particular, I.V. Ostrovskii in [68] obtained a generalization of Theorem 5.2, from
which the density of class I0 in class I followed.

Theorem 5.3 ([59, 68]). Every infinitely divisible law is a finite or infinite
convolution of laws from class I0. Class I0 is dense in class I of all infinitely
divisible laws.

For generalizations of Theorem 5.2, see also [4, 5, 7, 13, 14, 19, 69]. For other
special classes of characteristic functions studied by I.V. Ostrovskii, see [67,70,74].

6. On decompositions of multidimensional probability laws

Yu.V. Linnik mentioned in the book [49] as an important problem to extend
results on arithmetic of one-dimensional probability laws to the multidimensional
case. A number of works by I.V. Ostrovskii is dedicated to this problem. In [62]
he obtained a multidimensional analogue of Linnik’s theorem on the components
of the convolution of Gaussian and Poisson laws.
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In paper [75] I.V. Ostrovskii studied the question under what conditions an
n-dimensional infinitely divisible law P , which is a Cartesian product of one-
dimensional laws, has the property: all its components are also Cartesian prod-
ucts of one-dimensional ones. It turned out that it is sufficient to require that
the Lévy spectral measure λP of the law P satisfies condition

λP
(
{x ∈ Rn : ‖x‖ > r}

)
= O

(
exp(−Kr2)

)
, r → +∞, (6.1)

for some K > 0, and that the law P does not have a Gaussian component. In
the same paper, the following result was obtained about the class I0:

If a n-dimensional infinitely divisible law P is a Cartesian product of one-
dimensional laws of the class I0, and its spectral Lévy measure λP satisfies con-
dition (6.1), then P ∈ I0.

In [64, 65], I.V. Ostrovskii generalized and extended to the multidimensional
case the theorem of Raikov on characteristic functions analytical in a neighbor-
hood of the zero of the complex plane:

1) If the characteristic function of the one-dimensional law P is holomorphic in
the disk |t| < R, then it is holomorphic in the strip |Im t| < R;

2) If the characteristic function of the law P is holomorphic in the strip |Im t| <
R, then the same is true for the characteristic function of each component
of this law.

Here is also presented the following generalization to the multidimensional
case of another Raikov’s theorem:

Theorem 6.1 ([64, 65]). Let P be an infinitely divisible law in Rn with-
out a Gaussian component whose Lévy spectral measure is concentrated in some
bounded convex open set A ⊂ Rn such that A ∩ (A+A) = ∅. Then P ∈ I0.

The results of articles [51,52,66] relate to the same range of problems. I.V. Os-
trovskii and his student L.Z. Livshits in [53, 71] obtained the following, in some
sense unimprovable, result on infinitely divisible laws without Gaussian compo-
nent whose spectral Lévy measure is the restriction of the Lebesgue measure to
a certain set.

Theorem 6.2 ([53, 71]). Let P be an infinitely divisible n-dimensional law
without Gaussian component whose spectral Lévy measure λP is equal to

λP (E) = kln(E ∩A) (E is any Borel set),

where k > 0, ln is the Lebesgue measure in Rn, A is a bounded open set. Then
the following is true:

P ∈ I0 ⇐⇒ A∗ ∩ (2)M+(A) = ∅,

where A∗ is the convex hull of the set A, (m)A = {a1 + · · · + am : a1, . . . , am ∈
A}, M+(A) =

⋃∞
m=1(m)A.
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7. On class Iα0

In connection with some questions of mathematical statistics, Yu.V. Linnik
introduced a concept of α-component of the probability law, which generalizes the
concept of ordinary component. The probability law P1 is called an α-component
of the law P if there are laws P2, . . . , Pk, positive numbers α1, α2, . . . , αk and a
sequence of real numbers tn tending to zero, such that for all t = tn the equality
is true

ϕ(t, P ) = ϕα1(t, P1)ϕ
α2(t, P2) · · ·ϕαk(t, Pk).

Yu.V. Linnik posed the problem of describing class Iα0 of those infinitely divisible
laws that have only infinitely divisible α-components.

By 1970 it was known (Yu.V. Linnik, I.V. Ostrovskii) that if P ∈ L and for
some C > 0 the condition is satisfied

Tχ(x) = O
(

exp
(
− Cx2

))
, x→ +∞, (7.1)

where χ is the Lévi-Khinchin spectral measure of the law P , then P ∈ Iα0 .
I.V. Ostrovskii in [68,69] gave sufficient conditions for a law to belong to class

Iα0 that are different from the one above, and that generalize Raikov’s conditions
for belonging to the class I0 of finite convolutions of Poisson laws.

Theorem 7.1. Assume that the characteristic function of the law P have the
form

ϕ(t, P ) = exp

(
iβt+

∫
R

(
eitx − 1

))
χ(dx),

where β ∈ R, χ is a finite discrete measure on the line. Assume also that the
discrete spectrum of χ consists of points linearly independent over the field Q and
that condition (7.1) is satisfied for some C > 0. Then P ∈ Iα0 .

Theorem 7.1 implies that the class Iα0 is dense in the class I in the topology
of weak convergence. This work also solved the question of what the spectrum
of Poisson laws from the class Iα0 can be.

8. Properties of entire characteristic functions

I.V. Ostrovskii paid much attention to studying various properties of entire
characteristic functions of probability laws. In 1982, A.A. Goldberg and I.V. Os-
trovskii pubilshed the article [26] containing a deep analysis of the class of entire
characteristic functions of finite order. The following result from this work gives
a description of indicators of such functions (for brevity, the formulation given
for the case of functions of order strictly greater than 1).

Theorem 8.1 ([26]). Let ρ(r) be the refined order ρ(r)→ ρ > 1 (r →∞). In
order for there to be an entire characteristic function of refined order ρ(r) with
indicator h(θ) relative to rρ(r), it is necessary and sufficient that the function h(θ)
satisfies the following conditions:

1) h(θ) is a 2π-periodic ρ-trigonometrically convex function;
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2) h(θ + π/2) is an even function;

3) max{h(θ) : 0 ≤ θ ≤ 2π} = max{h(π/2), h(−π/2)} > 0;

4) the inequalities are satisfied

h(θ) ≤

{
h(π/2)(sin θ)ρ for 0 ≤ θ ≤ π,
h(−π/2)(| sin θ|)ρ for π ≤ θ ≤ 2π.

The article presents numerous applications of Theorem 8.1. Sufficient con-
ditions are presented for a set of points in C to be the zero set of an entire
characteristic function of a given refined order; it is shown that the entire char-
acteristic functions of finite order are not uniquely determined (modulo Gaussian
multiplier) by their zero sets; an answer is given to the question on the possible
number of negativity intervals for the indicator of entire characteristic functions
of finite order ρ in the case ρ > 1; relations between the Nevanlinna growth char-
acteristic T (r, ϕ) and logM(r, ϕ) are considered for entire characteristic functions
ϕ of finite order (we note here work [27], which considers the Paley effect for en-
tire characteristic functions of finite order); the estimate for the value of C(ρ)
(see definition of C(ρ) in (3.5)) has been improved (see (3.4)) and the hypothesis
is stated:

C(ρ) = 1− (1 + o(1))
√

2π/ρ, ρ→∞.

A complete description of the zero sets of entire characteristic functions of one-
dimensional probability laws without restrictions on the growth of the function
was obtained in [37,38].

Theorem 8.2 ([37, 38]). Let A be at most a countable set in C (points of
finite multiplicity are allowed). In order for the set A to be the zero set of some
entire characteristic function, it is necessary and sufficient that

1) A does not intersect the imaginary axis, it is symmetric about it (and the
multiplicities of points a and −ā must be the same);

2) for every 0 < H <∞ the condition is satisfied

log n(A; r,H) = o(r), r →∞,

where n(A; r,H) is a number (taking into account multiplicities) of points of
A in the rectangle {|Re t| < r, |Im t| < H}.

In particular, the zero sets of entire functions having sufficiently slow growth
and positive on the imaginary axis, are also the zero sets of entire characteristic
functions:

If f(t) is an entire function, f(0) = 1, f(t) > 0 for Re t = 0 and
log logM(r, f) = o(r), r → ∞, then there is an entire characteristic function
ψ(t) without zeros such that ψ(t)f(t) is a characteristic function.

In the n-dimensional case (n > 1), this work provides a description of algebraic
zero surfaces (in the case of entire characteristic functions of finite order this was
done in [22]), and the following general theorem was proved.

Let Bn denote the class of entire functions f(t), t ∈ Cn, such that:
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1) f(0) = 1, f(t) > 0 as Re t = 0;

2) sup{|f(t)| : |Im t| < H} <∞ for every H > 0.

Theorem 8.3 ([37,38]). For any function f(t) ∈ Bn there is an entire char-
acteristic function ψ(t) of a n-dimensional law that does not vanish and is such
that ψ(t)f(t) is a characteristic function.

Thus, the zero sets of entire characteristic functions of n-dimensional probabil-
ity laws are the same as those of entire functions of class Bn. The works [35,77,78]
study the zero sets of other special classes of entire characteristic functions.

9. Special semigroups with Khinchin’s theorems

In the late 1960s, after the works of D. Kendall [39], R. Davidson [8] and
K. Urbanik [85], interest arose in semigroups in which analogues of two Khinchin’s
fundamental theorems from the arithmetic of probabilistic laws on the line hold
true. I.V. Ostrovskii wrote in [73] that Yu.V. Linnik drew his attention to one of
such semigroups, introduced by J. Kingman [41] and associated with symmetric
random walks.

Let S be the set of all probability measures on the half-axis [0,+∞) equipped
with the binary operation ◦ (depending on the real parameter n > 1) defined by
the formula (f is an arbitrary continuous bounded function on [0,+∞))∫ ∞
0

f(x)(σ1◦σ2)(dx) =

∫ ∞
0

∫ ∞
0

∫ 1

−1
f((u2+v2+2uvλ)1/2)pn(λ) dλσ1(du)σ2(dv),

where

pn(λ) =
Γ(n/2)

Γ((n− 1)/2)
√
π

(1− λ2)(n−3)/2, −1 < λ < 1.

The validity of analogues of Khinchin’s fundamental theorems from the arith-
metic of probability laws on the line in the semigroup Sn = (S, ◦) was proved
by N. Bingham, class I(Sn) of infinitely divisible elements of the semigroup Sn
was described by J. Kingman. Class I0(Sn) was described in 1973 by I.V. Ostro-
vskii [72, 73].

Theorem 9.1 ([72,73]). The class I0(Sn) consists of Rayleigh distributions,
i.e. distributions with the density

ra(x) =
2an

Γ(n/2)
xn−1 exp(−a2x2), x ≥ 0,

where 0 < a < ∞, and the distribution concentrated at zero (which is the weak
limit of distributions with density ra(x) as a→ +∞).

When n is an integer, n ≥ 2, the semigroup Sn is isomorphic to the semigroup
of spherically symmetric (that is, invariant under all rotations of the space Rn
around the origin) distribution laws in Rn with the operation of ordinary convo-
lution. Rayleigh distributions from the semigroup Sn correspond to spherically
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symmetric Gaussian distributions in Rn. Therefore, in the semigroup of spher-
ically symmetric distribution laws in Rn(n ≥ 2) with the operation of ordinary
convolution, class I0 consists of spherically symmetric Gaussian laws and a law
concentrated at the origin.

The methods developed by I.V. Ostrovskii in this work were used by L.S. Ku-
dina in her research devoted to finding the conditions under which any component
of a spherically symmetric distribution law in Rn(n ≥ 2) or a law that is a Carte-
sian product of distribution laws of smaller dimensions, has the same form as
the original one, up to a shift [42–45]. The ideas of this work were applied by
I.V. Ostrovskii and his students in the study of the arithmetic of other special
semigroups [28–33,79,81–84].

I.V. Ostrovskii did not publish articles on the stability of decompositions of
probability laws and the arithmetic of probability laws on general locally com-
pact Abelian groups (see necessary definitions in [46]). However, he contributed
in every possible way to the development of these areas in Kharkiv. He ac-
tively supported G.P. Chistyakov who was working on problems of stability of
decompositions and G.M. Fel’dman who developed the theory of arithmetic of
probability laws on groups. Mainly due to their works, these fields have become
vast areas of research with highly nontrivial theorems and deep connections to
other mathematical theories. We refer the reader to review [1] for contribution of
G.P. Chistyakov to the theory of stability of expansions of probability laws. The
results of the works of G.M. Feldman on the arithmetic of probability distribu-
tions on abstract Abelian groups are presented in detail in the monograph [17].
See also [12,15,16,18].
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Про роботи Й.В. Островського з арифметики
ймовiрнiсних законiв

Alexander Il’inskii

Перша частина статтi є коротким оглядом розвитку арифметики
ймовiрнiсних законiв вiд роботи Г. Крамера про компоненти закону Га-
усса до дослiджень Ю.В. Лiнника 1950-х рокiв. У другiй частинi дано
опис внеску Й.В. Островського в арифметику ймовiрнiсних законiв та
теорiю аналiтичних характеристичних функцiй.

Ключовi слова: ймовiрнiсний закон, характеристична функцiя, без-
межно подiльний закон, клас I0, арифметика ймовiрнiсних законiв
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