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1. A Statement and History of the Problem

On the Euclidean plane, let be given a polygon Q with cyclicly numbered ver-
tices A1, A2, . . . , An and a point M in an arbitrary position. Denote by Mk the or-
thogonal projections of the point M on the lines AkAk+1, 1 ≤ k ≤ n, An+1 = A1.
The polygon P with successive vertices M1,M2, . . . , Mn is called the pedal poly-
gon of the point M relatively to the polygon Q (sometimes P is called the pedal
polygon of the polygon Q relatively to the point M). About the pedal polygons
of triangles one can read, for example, in [1], v.1, ch. 10. Among classical results
on pedals, the following assertion, known as the second Carnot theorem, is of the
most interest to us: The lengths of segments formed by successive vertices of a
triangle and its pedal triangle satisfy the equality
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In 1983, in [2] Smarandache generalized the assertion below for general n-gons in
the Euclidean plane.
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Theorem 1. The lengths of segments formed by successive vertices of an
n-gon and its pedal polygon satisfy the equality

A1M
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2 · · ·+ AnM2

n = M1A
2
2 + M2A

2
3 · · ·+ MnA2

1. (1)

When we consider polygons on a sphere, then on the definition of the pedal
polygon we should impose some additional conditions related with non-uniqueness
of the orthogonal projection of the point M in spherical lines in some cases. By
this reason, in [3] the notion of a regular point on the sphere of radius R is
introduced (a point M is called regular for a given spherical polygon if it is not
the pole for any line containing an edge of the polygon, that is, the point M does
not coincide with the center of any great circle containing an edge of the polygon)
and the following theorem is proved:

Theorem 2. Let the points Mk, k = 1, n be orthogonal projections of a regular
point M on the sides AkAk+1 (An+1 = A1) of a polygon A1A2 . . . An on the sphere
of radius R. Then

cos
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R
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R
. . . cos
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R
. (2)

As for validity of this theorem for polygons and their pedals in the Lobachevsky
plane, there are series of results: in [4] and [5] the generalization of the above
Carnot theorem is given (it is also mentioned in [6], p. 31), and in [7] a variant
of the generalization of the Smarandache theorem for convex polygons is given
(in [6], p. 32, an analogue of this assertion is mentioned for the upper half-plane
model but without any proof or reference). Apparently it should be referred to [8]
found in Intellectual Archive. But the results of these works cannot be considered
as a complete solution to the problem of the generalization of the Smarandache
theorem to the Lobachevsky plane by the following reasons.

1. In all the papers referred to above it is underlined that the question is about
the Smarandache theorem for the concrete interpretation of the Lobachevsky
plane, Poincaré models in a circle or upper half-plane, but not for the Lobachevsky
plane itself. This approach influences even on the formulation of the theorem and
makes it more complicated by including complex coordinates of vertices. There is
also some confusion between the validity of the theorem on the upper half-plane
model and on the ”abstract” Lobachevsky plane.

2. Considered is only the case of the convex polygons Q. Moreover, an addi-
tional assumption on the position of the point M is set. Namely, it is supposed
that triangles with the vertex M and neighbouring geodesics MkM and AjM ,
where j = k or j = k + 1, 1 ≤ k ≤ n, should be situated in the interior of Q. For
example, in the case of an obtuse triangle, no any point in the interior of Q can
be chosen as M .
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3. In the proof of the inverse theorem, a non-existing property of hyperbolic
functions is used: in the right-hand side of the identity

cosh(α) cosh(β) =
cosh(α + β) + cosh(α− β)

2

the difference of cosh is written instead of the sum of cosh.
The purpose of our paper is to give the generalization of the Smarandache

theorem to the Lobachevsky plane in a complete form, that is, without any
restrictions set on the shape of a polygon and with a maximal extension of the
positions of the point M , including its position on the absolute line or in the
ideal domain with a convenable interpretation of the orthogonal projection of
this point to the lines continuing the edges of the polygon. Notice that if the
point M is in the ideal domain, then we will require that their polar lines be
divergent with all the lines containing the edges of the considered polygon (for
more details see Section 6 below), and for the points M on the absolute circle we
exclude the case where the orthogonal projection on the sides of the polygon are
on the absolute.

R e m a r k 1. Our interest to the subject appeared while discussing the
N. Sönmez’s question from the letter [9] to the second author.

2. Formulation of the Main Result

First of all, let us specify the notion of a polygon in the Lobachevsky plane
understanding it in the same sense as it is done in [10] for the Euclidean case.
Namely, on a circle, let be given n points A∗1, A

∗
2, . . . , A

∗
n, numerated in one of

cyclic orders, and let a map f from the set of these points to the Lobachevsky
plane be given with a condition that the images of the neighbouring points
Ak = f(A∗k) and Ak+1 = f(A∗k+1) do not coincide. Join the images of any
two neighbouring points Ak and Ak+1, 1 ≤ k ≤ n(An+1 = A1) by a segment
of the straight line of the Lobachevsky plane. We will call the obtained figure
an n-gon in the Lobachevsky plane; the points Ak will be called the vertices of
the polygon, and the segments joining neighbouring vertices will be called the
sides or edges of the polygon (if the orientation is to be taken into account, we
will suppose that it is in accordance with the numeration of vertices). From the
condition f(A∗k) 6= f(A∗k+1) it follows that the lengths of the sides are not equal
to zero, but self-intersections and complete or partial superpositions of edges may
occur.

The main theorem is as follows.

Theorem 3. In the Lobachevsky plane of the curvature K = − 1
R2

let be given
an n-gon P : A1A2 . . . An and a point M in an arbitrary position, including also
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the position of M in the absolute or in the ideal domain. Let M1,M2, . . . ,Mn be
orthogonal projections of the point M in the lines AkAk+1, 1 ≤ k ≤ n, obtained
by continuing the sides AkAk+1. Then the lengths of the segments, formed by
successive vertices of Q and its pedal polygon P relatively to the point M , satisfy
the equality

n∏

k=1

cosh
AkMk

R
=

n∏

k=1

cosh
MkAk+1

R
. (3)

R e m a r k 2. Equality (3) can also be written in another form

n∑

k=1

ln
(
cosh

AkMk

R

)
=

n∑

k=1

ln
(
cosh

MkAk+1

R

)
. (4)

R e m a r k 3. By the general idea of the relation between the formulae of
spherical and hyperbolic geometries, (3) is ”naturally expected” from formula (2)
by changing R into iR. However, this method allows us to predict only the form
of dependance and does not claim that its application always ensures the validity
of the obtained result.

R e m a r k 4. We remark that according to the projective interpretation
of the Lobachevsky geometry, the perpendicular from the point M to the line
AkAk+1 passes through the pole of the line AkAk+1 respectively to the polaritet
defined by the absolute, that is, by the point of intersection of tangents to the
absolute at the end points of the line AkAk+1.

For all admissible positions of the point M , one can prove a theorem inverse
in some sense to the main theorem. Its exact formulation will be given in Sec. 5.

3. The Extended Lobachevsky Plane

Let us consider an oval quadric in the real projective plane as the absolute of
a hyperbolic plane. The points in the interior of the quadric will be called proper
points, the points in the quadric will be called infinite points, and the points
out of the quadric will be called the ideal points of the extended Lobachevsky
plane [11]. In the interior of the quadric, the Lobachevsky geometry is realized.
In the exterior of the quadric we have the geometry of a constant curvature
with an indefinite metric. The exterior domain is called the ideal domain of
the Lobachevsky plane or the De Sitter plane. The projective transformations
mapping the quadric onto itself are the motions in the hyperbolic and the De
Sitter planes, respectively. The lines intersecting the absolute at two real points
are called hyperbolic lines, those tangent to the absolute are called isotropic or
parabolic lines, others not having any point in common with the absolute are
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called elliptic lines. The ideal domain of the Lobachevsky plane topologically is
the Möbius band.

The Poincaré model with the metric

ds2 = R2 dx2 − dy2

y2
, y > 0,

covers the whole ideal domain except one isotropic line. In this case, the absolute
is the x-axe with one improper point. The curvature of this metric is 1

R2 . In the
considered Poincaré model of pseudo-Euclidean plane, the hyperbolic lines are
real lines and semi-circles orthogonal to the x-axe, the isotropic lines are circles
of zero radius with the centers on the x-axe, and the elliptic lines are the circles
of imaginary radius.

The main theorem is a corollary of the theorems below. Under the conditions
of the theorems to be proven, we will suppose that the polygons A1A2 . . . An

consist of proper points. The extended Lobachevsky plane will play an auxiliary
role only.

4. Smarandache Theorem in Hyperbolic Geometry

4.1. The case where the point M is in the proper domain of the
Lobachevsky plane

Theorem 4. Let the points Mk, k = 1, n be orthogonal projections of a point
M of the Lobachevsky plane on the sides AkAk+1 (An+1 = A1) of a polygon
P : A1A2 . . . An, respectively. Then relation (4) holds, and thus (3) also holds.

P r o o f. Let us join the point M with the vertices of the polygon P by
geodesic segments A1M, A2M, . . . , AnM . Let a, b be the lengthes of the legs, and
c be a length of hypotenuse of a rectangular triangle in the hyperbolic plane of
curvature K = − 1

R2 , then

ln(cosh
c

R
) = ln(cosh

a

R
) + ln(cosh

b

R
). (5)

By using (5), we can express the hypotenuses of each of 2n rectangular tri-
angles AkMkM and AkMk−1M , k = 1, n, M0 = Mn (among which there may be
degenerate ones) by two equalities (see Fig. 1):

ln(cosh
AkM

R
) = ln(cosh

AkMk

R
) + ln(cosh

MkM

R
)

ln(cosh
AkM

R
) = ln(cosh

Mk−1M

R
) + ln(cosh

Mk−1Ak

R
).

For the case when some of the rectangular triangles get degenerated, the
above formulae remain valid. We write the equalities for the right-hand sides
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Fig. 1.

and after the summation of n obtained equalities we arrive to the desired relation
(4). There are no restrictions to the position of the point M in the Lobachevsky
plane (notice that if M coincides with one of the vertices Ak of the polygon, then
its projections Mk−1 and Mk on the lines Ak−1Ak and AkAk+1, respectively, are
considered to coincide with Ak).

4.2. The case where the perpendiculars to the sides of the polygon
intersect at an infinite point M of the Lobachevsky plane

If the point M is a point at infinity, then the perpendiculars to the sides of the
polygon become parallel lines (see Fig. 2). Relation (3) is also valid for this case.

We present the stated above in another form. Remark that any perpendic-
ular to one of the lines passing along the sides of a given polygon P uniquely
determines a point M at infinity. Then the theorem is formulated as follows.

Theorem 5. If the perpendiculars to the sides of a polygon P : A1A2 . . . An

at points Mk, 1 ≤ k ≤ n, belonging correspondingly to the lines AkAk+1 (An+1 =
A1) are parallel lines, then relation (3) holds.

P r o o f. This relation can be obtained by a limit passage by moving away
a proper point M0 in one of the directions to the infinity. Note that M0

k denotes
the corresponding projections of the point M0. Applying the hyperbolic sine
theorem, we obtain for all 1 ≤ k ≤ n:

sinh
M0

kM0

R
= sin(M0Ak+1M

0
k ) sinh

Ak+1M0

R
,
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sinh
M0

kM0

R
= sin(M0AkM

0
k ) sinh

AkM0

R
.

We equate the right-hand sides and multiply the n obtained equalities. Since
the point M0 tends to the infinity, we can suppose that hyperbolic sines in these
formulas are not equal to zero, and thus we have the following relation:

sin(M0A1M
0
1 ) sin(M0A2M

0
2 ) . . . sin(M0AnM0

n)
= sin(M0A2M

0
1 ) sin(M0A3M

0
2 ) . . . sin(M0A1M

0
n). (6)

Let the point M0 tend to the infinity. Then the points M0
k converge to the

corresponding points Mk and the arguments of sines in the last formula become
the angles of parallelism of the corresponding segments. Using the known re-

lation sinπ(x) =
1

ch x
R

between the angle of parallelism and the length of the

corresponding perpendicular [12, §2], we can get relation (3).

Fig. 2.

Note that the intermediate relation (6) also holds in the Euclidean and spher-
ical geometries.

4.3. The case where the perpendiculars to the sides of a polygon
intersect at an ”ideal” point M of the Lobachevsky plane

We suppose that the points Mk are proper points of the Lobachevsky plane.
Again, instead of beginning from the projection of the ideal point M (in the same
way as in the previous case), we will begin from the bundle of perpendiculars to
the sides of the polygon P determining this point. All the lines of the bundle are
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perpendicular to a line of the Lobachevsky plane, that is, to the polar line of the
point M . The polar line of the point M divergent with all lines passing along the
sides of the polygon P uniquely defines the bundle of perpendiculars to the sides
of P .

Theorem 6. Let the perpendiculars to the sides of a polygon P : A1A2 . . . An

passing through the points Mk, 1 ≤ k ≤ n lying in the lines AkAk+1 (An+1 = A1),
respectively, belong to a bundle of divergent lines with the center at an ideal
point M . Then relation (3) holds.

P r o o f. The polar line p of the point M is a common perpendicular to the
lines MkM and AkM, 1 ≤ k ≤ n. Denote the points of intersection of these lines
with the polar p by M

′
k and A

′
k, respectively. The quadrilaterals AkMk−1M

′
k−1A

′
k

and AkMkM
′
kA

′
k have three right angles and acute angles at the vertex Ak (see

Fig. 3).

Fig. 3.

We introduce hyperbolic sines of common base of these quadrilaterals in two
forms (see [12, §4]):

sinh
AkA

′
k

R
= cosh

AkMk

R
sinh

MkM
′
k

R

and

sinh
AkA

′
k

R
= cosh

AkMk−1

R
sinh

Mk−1M
′
k−1

R
.
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Equating the right-hand sides and multiplying the n obtained equalities, we
get relation (3). The theorem is proved.

5. A Partial Inverse of the Main Theorem

Below we will use the following
R e m a r k 5. Under condition (3), the double inequality

exp (−A1An

R
) <

n−1∏

k=1

cosh AkMk
R

cosh Ak+1Mk

R

< exp (
A1An

R
)

holds for all bundles considered in Theorems 4–6. The similar relations are valid
for all sides of the considered polygon.

Theorem 7. Let the perpendiculars to all sides of a polygon P : A1A2 . . . An,
except the side A1An, be fixed and belong to one bundle with a center at a proper
point, or at a point at infinity, or at a regular ideal point M . Let relation (3) hold
for a point Mn in the line A1An, together with other points Mk, 1 ≤ k ≤ n − 1.
Then the point Mn is uniquely determined and the perpendicular to the line A1An

passing through the point Mn belongs to the bundle with the center at M .

P r o o f. First, we chose perpendiculars to other sides of the polygon
P : A1A2 . . . An and fix the n-1 vertex of the pedal polygon. Then in the left-
and right-hand sides of condition (3), two unknown factors remain, each for every
side. We find their relation and transform it. By choosing an orientation of the
line A1An, we will consider the lengths of geodesic arcs to be relative values, i.e.,
the values with plus or minus sign in dependence of the chosen direction. The
hyperbolic cosine being an even function, its value will not depend on the choice
of orientation. We have

cosh A1Mn
R

cosh AnMn
R

=
cosh (A1An

R + AnMn
R )

cosh AnMn
R

=
cosh A1An

R cosh AnMn
R + sinh A1An

R sinh AnMn
R

cosh AnMn
R

= cosh
A1An

R
+ sinh

A1An

R
tanh

AnMn

R
.

The points A1 and An are fixed. Using the double inequality given in Re-

mark 5, it is easy to see that for any value of c ∈ (exp (−A1An

R
); exp (

A1An

R
)),
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there exists a unique point Mn in the line A1An for which the condition

cos A1Mn
R

cos AnMn
R

= c

holds. It completes the proof of Theorem 7.
In the conditions of Theorem 7, the choosing of the (n − 2) perpendiculars

of a bundle with a center at a proper point, or at a point at infinity, or at an
ideal point on the Lobachevsky plane is insufficient for finding perpendiculars to
the remaining two sides of polygon such that they belong to the same bundle of
lines. In other words, the existence of the (n− 2) perpendiculars with necessary
properties is no sufficient to inverse Theorem 3 (or one of Theorems 4-6).

Indeed, let us take an n-gon P for which its (n− 1) vertices A1, A2, . . . , An−1

lie in a circle, or in a horocycle or in an equidistant. Join them by geodesic
segments. We can dispose the last vertex An in the midperpendicular to the
segment A1An−1. If the midpoints of all sides of P are chosen as the projections
of a point M , then relation (3) will be satisfied and the n− 2 perpendiculars will
belong to a bundle with the center M at a proper point, or at a point at infinity, or
at an ideal point. Moving the point An along the midperpendicular to the segment
A1An−1, we change the positions of two last perpendiculars. In any of three
cases considered, two last perpendiculars can be either intersecting, or parallel,
or divergent. The same fact, namely that the fixation of n − 2 perpendiculars
is not sufficient for a partial inversion of Theorems 4-6, can be shown in the
following way. We take a polygon with the coinciding vertices A1 and An−1. If
the n − 2 perpendiculars to the sides AkAk+1, 1 ≤ k ≤ n − 2, belong to one
bundle of any type, then the moving of the vertex An will cause the changing of
the position of other perpendiculars. Besides, relation (3) will hold for different
choices of the points Mn−1 and Mn. In particular, this is true for the case when
the points Mn−1 and Mn coincide.

6. Projection of an Ideal Point to a Hyperbolic Line

An ideal point M of the extended Lobachevsky plane is called the regular
point of the polygon if it is not a pole for any of its sides relatively to the polarity
defined by the absolute where the pole of a side is understood as the pole of the
line passing through this side. An ideal point M , which is the pole of one of the
sides of the considered polygon, is called the singular point of the polygon.

Let M be a regular ideal point of the extended Lobachevsky plane for a given
polygon. Let us draw the tangent lines from M to the absolute. They divide the
projective plane modelling the extended Lobachevsky plane into two parts one of
which contains the proper domain. If the poles of all lines containing the sides
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of the polygon lie in this part, then all projections of the point M in the sides of
the polygon are proper points.

If the pole of the line containing a side of the polygon lies in the second part,
then the projection of the point M in this line is an ideal point. If the pole of one
of the lines defined by the sides of the polygon lies in one of the drawn tangents,
then the projection of M to this line is a point at infinity, and the line will be
parallel to the polar line of the point M .

If the ideal point M is the pole of the side A1An of the polygon P : A1A2 . . . An,
then any hyperbolic line of the extended Lobachevsky plane passing through the
point M is perpendicular to this side. If we restrict ourselves by the perpendic-
ulars to the sides in the proper domain only, then these perpendiculars cannot
intersect at an ideal point singular for the considered polygon. Inversely, if in the
ideal domain we take a point M which is the pole of one of the sides of a polygon
P : A1A2 . . . An, say, of A1An, then the perpendiculars to all other sides of P will
be uniquely defined. Thereby, some projections of the point M to the sides of the
polygon P will be ideal points. In particular, the projections to the lines adjacent
with the side A1An and not collinear to it will be obligatorily ideal, and the per-
pendiculars from M to these sides will be elliptic lines of the ideal domain of the
extended Lobachevsky plane. In this case, the distances from the vertices of the
pedal polygon to the vertices A1, A2, . . . , An will be given by complex numbers.

7. Some Generalizations and Related Questions

The theorems proved in the paper can be generalized to the polygons in the
three-dimensional Lobachevsky space whose perpendiculars to the sides belong
to one of the bundles of spacial lines (intersecting, parallel or divergent).

In the Euclidean plane there is a well-known condition of degeneration of the
pedal triangle [13, pp. 40–41]:

The pedal triangle of a point M relatively to the triangle ABC is degenerated,
that is, its vertices lie on a line iff the point M belongs to the described circle of
the triangle ABC.

In the spherical and hyperbolic geometries this result does not hold. It can
be shown that in these geometries the pedal triangle of a point M relatively to
a triangle ABC is degenerated iff the point M belongs to a curve of degree 3
passing through the vertices of the triangle (the degree of a curve is determined
by its equation in projective models of these geometries). It would be interesting
to give a characterization of ”the curve of degeneration” in dependence of the
properties of given triangle in both geometries.
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