Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
DOI:
https://doi.org/10.15407/mag19.03.556Анотація
Знайдено розширення множини розв’язкiв проблеми стабiлiзацiї за скiнченний час за допомогою обмеженого позицiйного керування, яка також називається проблемою синтезу для канонiчної системи за допомогою функцiї керованостi Коробова. Ми розглядаємо випадок, коли значення функцiй керованостi в початковiй точцi є часом руху з цiєї початкової точки до нуля. У термiнах певних реальних параметрiв знайдено сiм’ю позицiйних керувань, що розв’язують проблему синтезу. Ми збiльшуємо iнтервал параметрiв i явно обчислюємо його кiнцевi точки як функцiї вiд розмiрностi $n$ системи, що розглядається.
Mathematical Subject Classification 2020: 93D15, 34D20, 34D05, 34H05.
Ключові слова:
проблема синтезу, стабiлiзацiя за скiнченний час, обмежене керування, канонiчна системаПосилання
S.P. Bhat and D.S. Berstein, Lyapunov analysis of finite-time differential equations, Proc. Am. Control. Conf. 3 (1995), 1831--1832.
R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.
V.G. Boltyanskii, Mathematical Methods of Optimal Control, (Russian), Nauka, Moscow, 1969.
M.D. Choi, Tricks and treats with the Hilbert matrix, Am. Math. Mon. 90 (1983), 301--312. https://doi.org/10.1080/00029890.1983.11971218
A.E. Choque-Rivero, The controllability function method for the synthesis problem of a nonlinear control system, Int. Rev. Autom. Control 1 (2008), 441--445.
A.E. Choque-Rivero, On the solution set of the admissible control problem via orthogonal polynomials, IEEE Trans. Automat. Contr. 62 (2017), 5213--5219. https://doi.org/10.1109/TAC.2016.2633820
A.E. Choque-Rivero, Extended Set of Solutions of a Bounded Finite-Time Stabilization Problem via the Controllability Function. IMA J. Math. Control Inf. 38 (2021), 1174--1188. https://doi.org/10.1093/imamci/dnab028
A.E. Choque-Rivero, G.A. González, and E. Cruz, Korobov's controllability function method applied to finite-time stabilization of the Rössler system via bounded controls, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 11 (2020), 1--17.
A.E. Choque-Rivero, V.I. Korobov, and G.M. Sklyar, The admissible control problem from the moment problem point of view, Appl. Math. Lett., 23 (2010), 58--63. https://doi.org/10.1016/j.aml.2009.06.030
A.E. Choque-Rivero, V.I. Korobov, and V.O. Skoryk, Controllability function as time of motion. I, Mat. Fiz. Anal. Geom, 11 (2004), 208--225 (Russian). Engl. transl: https://arxiv.org/abs/1509.05127.
A.E. Choque-Rivero, V.I. Korobov, and V.O. Skoryk, Controllability function as time of motion. II, Mat. Fiz. Anal. Geom, 11 (2004), 341--354 (Russian).
A.E. Choque-Rivero and C. Maedler, On Hankel positive definite perturbations of Hankel positive definite sequences and interrelations to orthogonal matrix polynomials. Complex Anal. Oper. Theory, 8 (2014), 1645--1698. https://doi.org/10.1007/s11785-013-0349-8
A.E. Choque-Rivero and F. Ornelas-Tellez, Bounded finite-time stabilization of the prey-predator model via Korobov's controllability function, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 21 (2021), 76--87. https://doi.org/10.18500/1816-9791-2021-21-1-76-87
P. Dorato, Comment on finite-time stability under perturbing forces and on product spaces. IEEE Trans. Automat. Contr. June, 1967, 340. https://doi.org/10.1109/TAC.1967.1098569
P. Dorato, An overview of finite-time stability. Current trends in nonlinear systems and control, Systems & Control: Foundations & Applications, 2004, 185--194. https://doi.org/10.1007/0-8176-4470-9_10
S. Fisk, A very short proof of Cauchy's interlace theorem for eigenvalues of Hermitian matrices, Am. Math. Mon. 112 2005, 118--118.
G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 2013.
E.V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), 73--81. https://doi.org/10.1016/0024-3795(68)90050-5
D. Hilbert, Ein Beitrag zur Theorie des Legendre'schen Polynoms. Acta Math. 18 (1894), 155--159 (German). https://doi.org/10.1007/BF02418278
S. Hitotumatu, Cholesky decomposition of the Hilbert matrix, Japan J. Indust. Appl. Math. 5(135) 1988, 135--144. https://doi.org/10.1007/BF03167904
G. Kamenkov, On stability of motion over a finite interval of time, J. Appl. Math. Mech. (PMM) 17 1953, 529--540, (Russian).
V.I. Korobov, A general approach to the solution of the problem of synthesizing bounded controls in a control problem, Mat. Sb. 109 (1979), 582--606 (Russian). Engl. transl.: Mat. Sb. 37 (1980), 535--557. https://doi.org/10.1070/SM1980v037n04ABEH002094
V.I. Korobov, A solution of the problem of synthesis using a controllability function, Dokl. Akad. Nauk SSSR, 248 (1979), 1051--1055 (Russian).
V.I. Korobov and T.I. Ivanova, Mapping of nonlinear control systems of the special form onto the canonical system Mat. Fiz. Anal. Geom. 8 (2001), 42--57 (Russian).
V.I. Korobov, Controllability function method, NITS, Inst. Comp. Research, M-Ighevsk, 2007 (Russian).
V.I. Korobov and Y.V. Korotyaeva, Feedback control design for systems with x-discontinuous rigt-hand side. J. Optim. Theory Appl. 149 (2011), 494--512. https://doi.org/10.1007/s10957-011-9800-z
V.I. Korobov and T.V. Revina, On perturbation range in the feedback synthesis problem for a chain of integrators system, IMA J. Math. Control. Inf. 38 (2021), 396--416. https://doi.org/10.1093/imamci/dnaa035
V.I. Korobov and G.M. Sklyar, Methods for constructing of positional controls and an admissible maximum principle, Differ. Uravn., 26 (1990), 1914--1924 (Russian).
V.I. Korobov and V.O. Skoryk Construction of restricted controls for a non-equilibrium point in global sense, Vietnam J. Math. 43 (2015), 459--469. https://doi.org/10.1007/s10013-015-0132-4
V.I. Korobov and K. Stiepanova The peculiarity of solving the synthesis problem for linear systems to a non-equilibrium point, J. Math. Phys. Anal. Geom, 17 (2021), 326--340. https://doi.org/10.15407/mag17.03.326
J. Lasalle and S. Letfschetz, Stability by Liapunov's direct method. Academic Press, New York, 1961.
A.M. Lyapunov, The general problem of the stability of motion, Kharkow Math. Soc., 1892 (Russian) Engl. transl.: Internat. J. Control, 1992, 55 (1892), 521--790.
D.R. Merkin, Introduction to the theory of stability, Springer, New York, 1996. https://doi.org/10.1007/978-1-4612-4046-4
A. Ovseevich and I. Ananievski, Robust feedback control for a linear chain of oscillators, J. Optim. Theory Appl. 188 (2021), 307--316. https://doi.org/10.1007/s10957-020-01765-z
V.D. Ouellete, Schur complements and statistics. Linear Algebra Appl. 36 (1981), 187--295. https://doi.org/10.1016/0024-3795(81)90232-9
J. Qin and G. Zhi, A new approach to inversion of a Cauchy matrix, Proceedings of Annual Conference of China Institute of Communicacions. Scientific Research Publishing Inc. (2009), 326--328. Available from: https://www.scirp.org/pdf/6-3.2.pdf
A.S. Poznyak, A.Y. Polyakov, and V.V. Strygin, Analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes, J. Appl. Math. Mech. 75 (2011), 289--303. https://doi.org/10.1016/j.jappmathmech.2011.07.006
G. Pólya and G. Szegö, Problems and Theorems in Analysis II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-3-642-61905-2
A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time stabilization using implicit Lyapunov function technique, IFAC Proceedings Volumes, 46(23) (2013), 140--145. https://doi.org/10.3182/20130904-3-FR-2041.00043
V.V. Prasolov, Polynomials. Springer, 2004. https://doi.org/10.1007/978-3-642-03980-5
J. Schur, Über Potenzreihen, die in Inneren des Eihitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205--232 (German). https://doi.org/10.1515/crll.1917.147.205
K.V. Sklyar, On mappability of control systems to linear systems with analytic matrices, Syst. Control Lett. 134 (2019), 1--6. https://doi.org/10.1016/j.sysconle.2019.104572
L. Weiss and E.F. Infante, Finite time stability under perturbing forces and produc spaces, IEEE Trans. Automat. Contr. 12 (1967), 54--59. https://doi.org/10.1109/TAC.1967.1098483