The Maximal Operator on the Amalgam Space

Автор(и)

  • Antonio L. Baisón Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo Xalpa 180, Mexico City, 02200, Mexico
  • Jorge Bueno-Contreras Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo Xalpa 180, Mexico City, 02200, Mexico
  • Victor A. Cruz Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo Xalpa 180, Mexico City, 02200, Mexico

DOI:

https://doi.org/10.15407/mag19.04.679

Анотація

Ми доводимо обмеженість максимального оператора Харді-Літтлвуда на амальгамних просторах $(L^p,\ell^q)(\mathbb{R}^n)$. Як наслідок, одержуємо обмеженість комутаторів на цих просторах.

Mathematical Subject Classification 2020: 42B25, 43A15, 47B47

Ключові слова:

амальгамні простори, максимальний оператор, комутатор

Посилання

K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, 48, Princeton University Press, 2009. https://doi.org/10.1515/9781400830114

J. Bourgain, M. Mirek, E.M. Stein, and B.A. Wróbel, On dimension-free variational inequalities for averaging operators in $R^d$ , Geom. Funct. Anal. 28 (2018), 58--99. https://doi.org/10.1007/s00039-018-0433-3

J. Bourgain, M. Mirek, E.M. Stein, and B.A. Wróbel, Dimension-free estimates for discrete Hardy-Littlewood averaging operators over the cubes in $ Z^d$, Amer. J. Math. 141 (2019), 857--905. https://doi.org/10.1353/ajm.2019.0023

C. Carton-Lebrun, H.P. Heinig, and S.C. Hofmann, Integral operators on weighted amalgams, Studia Math. 109 (1994), 133--157. https://doi.org/10.4064/sm-109-2-133-157

R.R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), 611--635. https://doi.org/10.2307/1970954

J.J.F. Fournier and J. Stewart, Amalgams of $L^p$ and ```$ℓ^q$ , Bull. Amer. Math. Soc. (N.S.) 13 (1985), 1--21. https://doi.org/10.1090/S0273-0979-1985-15350-9

J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, Holland Publishing Co., 1985.

H. Gunawan and C. Schwanke, The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math. 16, (2019), 24. https://doi.org/10.1007/s00009-018-1277-7

F. Holland, Harmonic analysis on amalgams of $L^p$ and $ℓ^q$, J. London Math. Soc. (2) 10 (1975), 295--305. https://doi.org/10.1112/jlms/s2-10.3.295

S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World Scientific, 2007. https://doi.org/10.1142/6428

E.M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993. https://doi.org/10.1515/9781400883929

J. Stewart, Fourier transforms of unbounded measures, Canad. J. Math. 31 (1979), 1281--1292. https://doi.org/10.4153/CJM-1979-106-4

N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575--616. https://doi.org/10.1007/BF01216799

N. Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), 1--100. https://doi.org/10.2307/1968102

Downloads

Як цитувати

(1)
Baisón, A. L.; Bueno-Contreras, J.; Cruz, V. A. The Maximal Operator on the Amalgam Space. Журн. мат. фіз. анал. геом. 2023, 19, 679–695.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.