On Circular Tractrices in R3

Автор(и)

  • V. Gorkavyy B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
  • A. Sirosh V.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine

DOI:

https://doi.org/10.15407/mag19.04.766

Анотація

Досліджуються властивості циркулярних аналогів трактрис і псевдосфер в $R^3$.

Mathematical Subject Classification 2020: 53A04, 53A07

Ключові слова:

трактриса, циркулярна трактриса, псевдосфера

Посилання

Yu.A. Aminov, Differential geometry and topology of curves, Nauka, Moscow, 1987.

Yu. Aminov and A. Sym, On Bianchi and Backlund transformations of two-dimensional surfaces in $E^4$, Math. Phys. Anal. Geom. 3 (2000), 75--89. https://doi.org/10.1023/A:1009802207509

G. Bor, M. Levi, R. Perlin, and S. Tabachnikov, Tire tracks and integrable curve evolution, Int. Math. Res. Not. IMRN 2020 (2020), 2698--2768. https://doi.org/10.1093/imrn/rny087

W.G. Cady, The circular tractrix, Amer. Math. Monthly 72 (1965), 1065--1071. https://doi.org/10.1080/00029890.1965.11970673

M.P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.

R. Foot, M. Levi, and S. Tabachnikov, Tractrices, bicycle tire tracks, Hatchet planimeters, and a 100-year-old conjecture, Amer. Math. Monthly 120 (2013), 199-216. https://doi.org/10.4169/amer.math.monthly.120.03.199

V. Gorkavyy, On pseudo-spherical congruencies in $E^4$, Math. Phys. Anal. Geom. 10 (2003), 498--504.

V.A. Gorkavyy, Bianchi congruencies of two-dimensional surfaces in $E^4$, Sb. Math. 196 (2005), 1473--1493. https://doi.org/10.1070/SM2005v196n10ABEH003708

V. Gorkavyy, An example of Bianchi transformation in $E^4$, J. Math. Phys. Anal. Geom. 8 (2012), 240--247.

V.A. Gor'kavyi, Generalization of the Bianchi-Bäcklund transformation of pseudo-spherical surfaces, J. Math. Sci. (N.Y.) 207 (2015), 467--484. https://doi.org/10.1007/s10958-015-2380-y

V. Gorkavyy and O. Nevmerzhytska, Pseudo-spherical submanifolds with degenerate Bianchi transformation, Results Math. 60 (2011), 103--116. https://doi.org/10.1007/s00025-011-0168-z

V.A. Gor'kavyi and E.N. Nevmerzhitskaya, Degenerate Bäcklund transformation, Ukrain. Mat. Zh. 68 (2016), 41--56. https://doi.org/10.1007/s11253-016-1207-4

V. Gorkaviy, O. Nevmershitska, and K. Stiepanova, Generalized circular tractrices and Dini surfaces, IV International conference ''Analysis and mathematical physics'': Book of abstracts, Kharkiv, 2016, 22--22.

J. Sharp, The circular tractrix and trudrix, Mathematics in School 26 (1997), 10--13.

K. Stiepanova and V. Gorkaviy, Helical tractrices and pseudo-spherical submanifolds in $ R^n$, International conference ''Geometry, Differential Equations and Analysis'': Book of abstracts, Kharkiv, 2019, 34--35.

K. Tenenblat, Transformations of manifolds and applications to differential equations, Longman, London, 1998.

E.W. Weisstein, Pseudosphere, A Wolfram Web Resource. https://mathworld.wolfram.com/Pseudosphere.html

Downloads

Як цитувати

(1)
Gorkavyy, V.; Sirosh, A. On Circular Tractrices in R3. Журн. мат. фіз. анал. геом. 2023, 19, 766–780.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають