Optimal Control Problems for Evolutionary Variational Inequalities with Volterra-Type Operators
DOI:
https://doi.org/10.15407/mag20.01.025Анотація
У цiй статтi розглядаємо задачу оптимального керування для класу еволюцiйних субдиференцiальних включень з операторами типу Вольтерра. Результати стосовно iснування та єдиностi розв’язку задачi з початковою умовою для таких включень були отриманi в попереднiй нашiй роботi. Тут встановлюємо iснування розв’язку поставленої задачi оптимального керування за деяких припущень на вхiднi данi. Мотивацiєю для цiєї роботи є задачi оптимального керування системами, що описуються еволюцiйними варiацiйними нерiвностями, що виникають при вивченнi процесiв лиття пiд тиском, контактної механiки, процесiв електрозмочування дiелектрика та iнших.
Mathematical Subject Classification 2020: 34H05, 35K86, 49J20, 49J21,
49J27, 49J40
Ключові слова:
параболiчна варiацiйна нерiвнiсть, еволюцiйна варiацiйна нерiвнiсть, оператор типу Вольтерра, оптимальне керуванняПосилання
N.U. Ahmed and K.L. Teo, Optimal Control of Distributed Parameters Systems, North-Holland Publishing Co., New York-Amsterdam, 1981.
J.-P. Aubin, Un theoreme de compacite, C. R. Hebd. Seances Acad. Sci.256 (1963), 5042--5044.
V. Barbu, Optimal Control of Variational Inequalities, Pitman (Advanced Publishing Program), Boston, MA, 1984.
M. Bokalo and O. Sus., Evolutionary variational inequalities with Volterra type operators, Mathematics and Statistics 7 (2019), 182--190. https://doi.org/10.13189/ms.2019.070504
M. Bokalo and A. Tsebenko, Optimal control for systems governed by parabolic equations without initial conditions with controls in the coefficients, Electron. J. Differential Equations 72 (2017), 1--22. https://doi.org/10.15330/cmp.8.1.21-37
M. Boukrouche and D. Tarzia, On existence, uniqueness, and convergence of optimal control problems governed by parabolic variational inequalities, System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol. 391, Springer-Verlag, Berlin, 2013, 76--84. https://doi.org/10.1007/978-3-642-36062-6_8
P. Cannarsa, H. Frankowska, and E.M. Marchini, Optimal control for evolution equations with memory, J. Evol. Equ. 13 (2013), 197--227. https://doi.org/10.1007/s00028-013-0175-5
S. Carl, S. Heikkila, and J. Jerome, Trapping regions for discontinuously coupled systems of evolution variational inequalities and application, J. Math. Anal. Appl. 282 (2003), 421--435. https://doi.org/10.1016/S0022-247X(03)00130-6
L. Cesari, Existence of solutions and existence of optimal solutions, in Mathematical Theories of Optimization, Lecture Notes in Math., 979, (Eds. J.P.Cecconi and T.Zolezzi), Springer-Verlag, Berlin, New York, 1983. https://doi.org/10.1007/BFb0066250
H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. https://doi.org/10.1002/mana.19750672207
R. Glowinski, R. Kumar, and J. Jansson, Control of distributed parameter systems modeled by parabolic variational inequalities of the obstacle type, preprint.
J. Han, L.Lu, and S. Zeng, Evolutionary variational-hemivariational inequalities with applications to dynamic viscoelastic contact mechanics, Z. Angew. Math. Phys. 71 (2020), 32. https://doi.org/10.1007/s00033-020-1260-6
J. Haslinger and P.D. Panagiotopoulos, Optimal control of systems governed by hemivariational inequalities, Existence and approximation results, J. Nonlinear Anal. 24 (1995), 105--119. https://doi.org/10.1016/0362-546X(93)E0022-U
S. Hu and N. Papageorgiou, Time-dependent subdifferential evolution inclusions and optimal control, Mem. Amer. Math. Soc. 133 (1998), 632. https://doi.org/10.1090/memo/0632
J. Jarusek, M. Krbek, M. Rao, and J. Sokolowski, Conical differentiability for evolution variational inequalities, J. Differential Equations 193 (2003), 131--146. https://doi.org/10.1016/S0022-0396(03)00136-0
K. Ito and K. Kunisch, Optimal control of parabolic variational inequalities, J. Math. Pures Appl. 93 (2010), 329--360. https://doi.org/10.1016/j.matpur.2009.10.005
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971. https://doi.org/10.1007/978-3-642-65024-6
F. Mignot and J.P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim. 22 (1984), 466-476. https://doi.org/10.1137/0322028
S. Migórski, Optimal control of history-dependent evolution inclusions with applications to frictional contact, J. Optim. Theory Appl. 185 (2020), 574--596. https://doi.org/10.1007/s10957-020-01659-0
N. Papageorgiou, Nonlinear Volterra integrodifferential evolution inclusions and optimal control, Kodai Math. J. 14 (1991), 254--280. https://doi.org/10.2996/kmj/1138039398
N. Papageorgiou, On parametric evolution inclusions of the subdifferential type with applications to optimal control problems, Trans. Am. Math. Soc. 347 (1995), 203--231. https://doi.org/10.1090/S0002-9947-1995-1282896-X
D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Sijthoff and Noordhoff, Bucharest, 1978. https://doi.org/10.1007/978-94-009-9544-4
R. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209--216. https://doi.org/10.2140/pjm.1970.33.209
R. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, 49, Amer. Math. Soc., Providence, RI, 1997.
D. Tiba, Optimal Control Nonsmooth Distributed Parameter Systems, Lecture Notes in Mathematics 1459, Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/BFb0085564
A. Tolstonogov, Variational stability of optimal control problems involving subdifferential operators, Mat. Sb. 202 (2011), 123--160. https://doi.org/10.1070/SM2011v202n04ABEH004157
K. Yoshida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, 1995.