Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand

Автор(и)

  • Rustamjon Khakimov Institute of Mathematics, Namangan State University, 316, Uychi str., Namangan, 160136, Uzbekistan
  • Kamola Umirzakova Namangan State University, 316, Uychi str., Namangan, 160136, Uzbekistan

DOI:

https://doi.org/10.15407/mag20.01.066

Анотація

Ми розглядаємо фертильнi (Hard-Core) HC-моделi з трьома стана-
ми з параметром активностi $\lambda >0$ на деревi Кейлi. Вiдомо, що iснують
чотири типи таких моделей: гайковий ключ, паличка, петля i труба. Цi
моделi виникають як простi приклади втрат взаємодiї з найближчим
сусiдом. У випадку “палички” на деревi Кейлi порядку $k\ge 2$ знайдено
точнi критичнi значення $\lambda >0$, для яких двоперiодичнi мiри Гiббса не
є єдиними. Крiм того, ми вивчаємо екстремальнiсть iснуючих двоперiо-
дичних мiр Гiббса на деревi Кейлi другого порядку.

Mathematical Subject Classification 2020: 82B26, 60K35

Ключові слова:

дерево Кейлi, конфiгурацiя, фертильна модель Hard- core, мiра Гiббса, критична температура, екстремальнiсть мiри

Посилання

R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic, London 1982.

G.R. Brightwell and P. Winkler, Hard constraints and the Bethe lattice: adventures at the interface of combinatorics and statistical physics, Proceedings of the ICM 2002, IIIi, Higher Education Press, Beijing, 2002, 605--624.

G. Brightwell and P. Winkler, Graph homomorphisms and phase transitions, J. Combin. Theory Ser.B. 77 (1999), 221--262. https://doi.org/10.1006/jctb.1999.1899

L. Coquille, Examples of DLR states which are not weak limits of finite volume Gibbs measures with deterministic boundary conditions, J. Stat. Phys. 159 (2015), 958--971. https://doi.org/10.1007/s10955-015-1211-3

S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems. A Concrete Mathematical Introduction, Cambridge University Press, Cambridge, 2018. https://doi.org/10.1017/9781316882603

D. Galvin and J. Kahn, On phase transition in the hard-core model on $ Z^d$. Comb. Prob. Comp. 13 (2004), 137--164. https://doi.org/10.1017/S0963548303006035

N.N. Ganikhodjaev and U.A. Rozikov, Description of periodic extreme Gibbs measures of some lattice models on a Cayley tree, Theor. Math. Phys. 111 (1997), 480--486. https://doi.org/10.1007/BF02634202

H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, Walter de Gruyter, Berlin, 1988. https://doi.org/10.1515/9783110850147

F. Kelly, Loss networks, Ann. Appl. Probab. 1 (1991), 319--378. https://doi.org/10.1214/aoap/1177005872

H. Kesten, Quadratic transformations: a model for population growth. I. Adv. Appl. Probab. 2 (1970), 1--82. https://doi.org/10.1017/S0001867800037216

H. Kesten and B.P. Stigum, Additional limit theorem for indecomposable multi-dimensional Galton-Watson processes, Ann. Math. Statist. 37 (1966), 1463--1481. https://doi.org/10.1214/aoms/1177699139

S. Kissel, C. Külske, and U.A. Rozikov, Hard-core and soft-core Widom-Rowlinson models on Cayley trees, Jour. Stat. Mech.: Theory and Exper. 2019 (2019), P043204. https://doi.org/10.1088/1742-5468/ab081e

R.M. Khakimov, Translation-invariant Gibbs measures for fertile three-state "Hard Core" models on a Cayley tree, Theor. Math. Phys. 183 (2015), 441--449. https://doi.org/10.4213/tmf8700

C. Külske and U.A. Rozikov, Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree, Random Structures Algorithms 50 (2017), 636--678. https://doi.org/10.1002/rsa.20671

C. Külske and U.A. Rozikov, Extremality of translation-invariant phases for a three-state SOS-model on the binary tree. Jour. Stat. Phys. 160 (2015), 659--680. https://doi.org/10.1007/s10955-015-1279-9

J.B. Martin, U.A. Rozikov, and Yu.M. Suhov, A three state hard-core model on a Cayley tree, J. Nonlin. Math. Phys. 12 (2005), 432--448. https://doi.org/10.2991/jnmp.2005.12.3.7

F. Martinelli, A. Sinclair, and D. Weitz, Fast mixing for independent sets, coloring and other models on trees, Random Structures Algorithms 31 (2007), 134--172. https://doi.org/10.1002/rsa.20132

A.E. Mazel and Yu.M. Suhov, Random surfaces with two-sided constraints: an application of the theory of dominant ground states, J. Stat. Phys. 64 (1991), 111--134. https://doi.org/10.1007/BF01057870

P. Mitra, K. Ramanan, A. Sengupta, and I. Ziedins, Markov random field models of multicasting in tree networks, Adv. Appl. Probab.34 (2002), 1--27. https://doi.org/10.1239/aap/1019160950

C.J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974. https://doi.org/10.1017/CBO9780511897122

U.A. Rozikov, Gibbs measures on Cayley trees, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. https://doi.org/10.1142/8841

U.A. Rozikov and R.M. Khakimov, Gibbs measures for the fertile three-state hard core models on a Cayley tree, Queueing Systems 81 (2015), 49--69. https://doi.org/10.1007/s11134-015-9450-1

U.A. Rozikov and R.M. Khakimov, Periodic Gibbs measures for Potts model on the Cayley tree, Theor. Math. Phys. 175 (2013), 699--709. https://doi.org/10.1007/s11232-013-0055-8

U.A. Rozikov and Sh.A. Shoyusupov, Fertile HC models with three states on a Cayley tree, Theor. Math. Phys. 156 (2008), 1319--1330. https://doi.org/10.1007/s11232-008-0109-5

Ya.G. Sinai, Theory of Phase Transitions: Rigorous Results, Nauka, Moscow, 1980 (Russian); English transl. Intl. Series Nat. Philos., 108, Pergamon, Oxford, 1982.

Yu.M. Suhov and U.A. Rozikov, A hard-core model on a Cayley tree: an example of a loss network, Queueing Systems 46 (2004), 197--212. https://doi.org/10.1023/B:QUES.0000021149.43343.05

Downloads

Як цитувати

(1)
Khakimov, R.; Umirzakova, K. Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand. Журн. мат. фіз. анал. геом. 2024, 20, 66–81.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.