Ricci–Bourguignon Solitons on Sequential Warped Product Manifolds

Автор(и)

  • Dilek Açıkgöz Kaya Aydın Adnan Menderes University, Department of Mathematics, 09010, Aydın, Türkiye
  • Cihan Özgür İzmir Democracy University, Department of Mathematics, 35140, İzmir, Türkiye

DOI:

https://doi.org/10.15407/mag20.02.205

Анотація

Ми вивчаємо солiтони Рiччi–Бургiньона на многовидах iз секвенцiально викривленим добутком. Одержано необхiднi умови того, що солiтон Рiччi–Бургiньона iз структурою секвенцiально викривленого добутку є многовидом Ейнштейна, коли потенцiйне поле розглядається як поле Кiллiнга або конформне векторне поле.

Mathematical Subject Classification 2020: 53E20, 53C21, 53C25

Ключові слова:

солiтон Рiччi–Бургiньона, многовид з викривленим добутком, многовид iз секвенцiально викривленим добутком, векторне поле Кiллiнга, конформне векторне поле

Посилання

D. Açikgöz Kaya and L. Onat, Ricci solitons on multiply warped product manifolds, Int. Electron. J. Geom. 13 (2020), 152--159. https://doi.org/10.36890/iejg.777046

A.M. Blaga and C. Özgür, Remarks on submanifolds as almost η-Ricci-Bourguignon solitons, Facta Univ. Ser. Math. Inform. 37 (2022), 397--407. https://doi.org/10.22190/FUMI220318027B

A.M. Blaga and H.M. Taştan, Some results on almost η-Ricci-Bourguignon solitons, J. Geom. Phys. 168 (2021), 104316, 9 pp. https://doi.org/10.1016/j.geomphys.2021.104316

A.M. Blaga and H.M. Taştan, Gradient solitons on doubly warped product manifolds, Rep. Math. Phys. 89 (2022), 319--333. https://doi.org/10.1016/S0034-4877(22)00036-2

R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1--49. https://doi.org/10.1090/S0002-9947-1969-0251664-4

J-P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis (Berlin, 1979), Lecture Notes in Math., 838, Springer, Berlin, 1981, 42--63. https://doi.org/10.1007/BFb0088841

H.-D. Cao, Geometry of Ricci Solitons, Chinese Ann. Math. Ser. B 27 (2006), 121--142. https://doi.org/10.1007/s11401-005-0379-2

B.-Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc. 52 (2015), 1535--1547. https://doi.org/10.4134/BKMS.2015.52.5.1535

B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, Recent advances in the geometry of submanifolds dedicated to the memory of Franki Dillen (1963-2013), Contemp. Math., 674, Amer. Math. Soc., Providence, RI, 2016, 27--39. https://doi.org/10.1090/conm/674/13552

B.-Y. Chen, Differential geometry of warped product manifolds and submanifolds, With a foreword by Leopold Verstraelen. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

A.W. Cunha, R. Lemos, and F. Roing, On Ricci-Bourguignon solitons: triviality, uniqueness and scalar curvature estimates, J. Math. Anal. Appl. 526 (2023), 127333, 16 pp. https://doi.org/10.1016/j.jmaa.2023.127333

A.W. Cunha, A.N. Silva Jr., E.L. De Lima, and H.F. De Lima, A note on triviality of gradient solitons of the Ricci-Bourguignon flow, Arch. Math. (Basel) 120 (2023), 89--98. https://doi.org/10.1007/s00013-022-01803-4

U.C. De and K. Mandal, Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds, J. Math. Phys. Anal. Geom. 15 (2019), 307--320. https://doi.org/10.15407/mag15.03.307

U.C. De, C.A. Mantica, S. Shenawy, and B. Ünal, Ricci solitons on singly warped product manifolds and applications, J. Geom. Phys. 166 (2021), 104257. https://doi.org/10.1016/j.geomphys.2021.104257

U.C. De, S. Shenawy, and B. Ünal, Sequential warped products: curvature and conformal vector fields, Filomat 33 (2019), 4071--4083. https://doi.org/10.2298/FIL1913071D

S. Deshmukh and H. Al-Sodais, A note on almost Ricci solitons, Anal. Math. Phys. 10 (2020), 76, 11 pp. https://doi.org/10.1007/s13324-020-00424-w

S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Canad. Math. Bull. 64 (2021), 591--604. https://doi.org/10.4153/S0008439520000673

M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), 345--367. https://doi.org/10.1007/s00229-008-0210-y

F.E.S. Feitosa, A.A.F. Filho, and J.N.V. Gomes, On the construction of gradient Ricci soliton warped product, Nonlinear Anal. 161 (2017), 30--43. https://doi.org/10.1016/j.na.2017.05.013

M. Fernandez-Lopez and E. Garcia-Rio, Rigidity of shrinking Ricci solitons, Math. Z. 269 (2011), 461--466. https://doi.org/10.1007/s00209-010-0745-y

A. Ghosh, Certain triviality results for Ricci-Bourguignon almost solitons, J. Geom. Phys. 182 (2022), 104681. https://doi.org/10.1016/j.geomphys.2022.104681

S. Güler and B. Ünal, Gradient ρ-Einstein Solitons and Applications, preprint, https://arxiv.org/abs/2211.09868 .

S. Günsen and L. Onat, Gradient almost Ricci solitons on multiply warped product manifolds, Carpathian Math. Publ., 13 (2021), 386--394. https://doi.org/10.15330/cmp.13.2.386-394

S. Günsen, L. Onat, and D.A. Kaya, The warped product manifold as a gradient Ricci soliton and relation to its components, C. R. Acad. Bulgare Sci. 72 (2019), 1015--1023. https://doi.org/10.7546/CRABS.2019.08.03

R.S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255--306. https://doi.org/10.4310/jdg/1214436922

R.S. Hamilton, The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237--262. https://doi.org/10.1090/conm/071/954419

R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, 7--136. https://doi.org/10.4310/SDG.1993.v2.n1.a2

F. Karaca and C. Özgür, Gradient Ricci solitons on multiply warped product manifolds, Filomat 32 (2018), 4221--4228. https://doi.org/10.2298/FIL1812221K

F. Karaca, C. Özgür, On quasi-Einstein sequential warped product manifolds, J. Geom. Phys. 165 (2021), 104248. https://doi.org/10.1016/j.geomphys.2021.104248

P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), 329--345. https://doi.org/10.2140/pjm.2009.241.329

S. Pigola, M. Rigoli, M. Rimoldi, and A. G. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011), 757--799. https://doi.org/10.2422/2036-2145.2011.4.01

R. Sharma and S. Deshmukh, Ricci almost solitons with associated projective vector field, Adv. Geom. 22 (2022), 1--8. https://doi.org/10.1515/advgeom-2021-0034

Y. Soylu, Ricci-Bourguignon solitons and almost solitons with concurrent vector field, Differ. Geom. Dyn. Syst. 24 (2022), 191--200.

B. Şahin, Sequential warped product submanifolds having holomorphic, totally real and pointwise slant factors, Period. Math. Hungar. 85 (2022), 128--139. https://doi.org/10.1007/s10998-021-00422-w

N. Bin Turki, S. Shenawy, H. K. El-Sayied, N. Syied, and C. A. Mantica, ρ-Einstein Solitons on warped product manifolds and applications, J. Math. 2022, 1028339. https://doi.org/10.1155/2022/1028339

B. Ünal, Multiply warped products, J. Geom. Phys. 34 (2000), 287--301. https://doi.org/10.1016/S0393-0440(99)00072-8

B. Ünal, Doubly warped products, Differential Geom. Appl. 15 (2001), 253--263. https://doi.org/10.1016/S0926-2245(01)00051-1

Downloads

Як цитувати

(1)
Kaya, D. A.; Özgür, C. Ricci–Bourguignon Solitons on Sequential Warped Product Manifolds. Журн. мат. фіз. анал. геом. 2024, 20, 205–220.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.