Semi-Symmetric Curvature Properties of Robertson–Walker Spacetimes
DOI:
https://doi.org/10.15407/mag18.03.368Анотація
Метою цiєї роботи є характеризацiя просторiв-часiв Робертсона–Вокера (РВ), що задовольняють деякi умови на кривину. Отримано необхiднi та достатнi умови того, що РВ простiр-час є Рiччi напiвсиметричним. Доведено, що чотиривимiрний Рiччi симетричний РВ простiр-час є вакуумним. Також ми дослiджуємо властивостi проективної колiнеацiї та колiнеацiї матерiї в рамках чотиривимiрного Рiччi симетричного РВ простору-часу. Помiж iншого доведено, що лоренцевий многовид розмiрностi n ≥ 3 є РВ простором тодi, i лише тодi, коли простiр-час має квазiсталу кривину. Нарештi, отримано деякi новi характеристики РВ просторiв-часiв.
Mathematical Subject Classification 2010: 53B30, 53B50, 53C15
Ключові слова:
лоренцевий многовид, симетричний простор, простiр-час Робертсона–Вокера, узагальнений простiр-час Робертсона–Вокера, простiр-час iдеальної рiдини, простiр-час квазiсталої кривини, тензори проективної та конформної кривиниПосилання
L. Alı́as, A. Romero, and M. Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit. 27 (1995), 71-84. https://doi.org/10.1007/BF02105675
K. Arslan, R. Deszcz, R. Ezentas, M. Hotloś, and C. Murathan, On generalized Robertson-Walker spacetimes satisfying some curvature condition, Turk J. Math 38 (2014), 353-373. https://doi.org/10.3906/mat-1304-3
K. Arslan, Y. C̣elik, R. Deszcz, and R. Ezentas , On the equivalence of Ricci-semisymmetry and semisymmetry, Colloq. Math. 76 (1998), 279-294. https://doi.org/10.4064/cm-76-2-279-294
A. Barnes, Projective collineations in Einstein spaces, Classical Quantum Gravity 10 (1993), 1139-1145. https://doi.org/10.1088/0264-9381/10/6/010
M. Brozos-Vázquez, E. Garcia-Rio, and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static spacetimes, J. Math. Phys. 46 (2005), 022501. https://doi.org/10.1063/1.1832755
S. Capozziello, S. Carloni, and A. Troisi, Quintessence without scalar fields, Recent Res. Dev. Astron. Astrophys. 625 (2003), astro-ph/030304.
J. Carot, J. da Costa, and E.G.L.R. Vaz, Matter collineations: The inverse "symmetry inheritance" problem, J. Math. Phys. 35 (2014), 4832-4838. https://doi.org/10.1063/1.530816
M.C. Chaki, On pseudo-symmetric manifolds, An. Sti. Ale Univ., "AL. I.CUZA" Din Iasi 33 (1987), 53-58.
S.K. Chaubey, Generalized Robertson-Walker space-times with W1-curvature tensor, J. Phys. Math. 10 (2019), 1000303.
S.K. Chaubey and Y.J. Suh, Generalized Ricci recurrent spacetimes and GRW spacetimes, Int. J. Geom. Methods Mod. Phys. 18 (2021), No. 13, 2150209. https://doi.org/10.1142/S0219887821502091
S.K. Chaubey, Y.J. Suh, and U.C. De, Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection, Anal. Math. Phys. 10 (2020), No. 4, 61. https://doi.org/10.1007/s13324-020-00411-1
S.K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afr. Mat. 30 (2019), 113-127. https://doi.org/10.1007/s13370-018-0631-z
S.K. Chaubey, Characterization of perfect fluid spacetimes admitting gradient η-Ricci and gradient Einstein solitons, J. Geom. Phys. 162 (2021), 104069. https://doi.org/10.1016/j.geomphys.2020.104069
B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen Relativ Gravit 46 (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9
B.-Y.Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor N. S. 26 (1972), 318-322.
A.A. Coley, Fluid spacetimes admitting a conformal Killing vector parallel to the velocity vector, Class. Quantum Grav. 8 (1991), 955-968. https://doi.org/10.1088/0264-9381/8/5/019
U.C. De and S.K. Ghosh, On conformally flat pseudo-symmetric spaces, Balk. J. Geom. Appl. 5 (2000), 61-64.
U.C. De, S.K. Chaubey, and S. Shenawy, Perfect fluid spacetimes and Yamabe solitons, J. Math. Phys. 62 (2021), No. 3, 032501. https://doi.org/10.1063/5.0033967
R. Deszcz and M. Glogowska, Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. Math. 94 (2002), 87-101. https://doi.org/10.4064/cm94-1-7
L.M. Diaz-Rivera and L.O. Pimentel, Required conditions for late time acceleration and early time deceleration in generalized scalar-tensor theories, Int. J. Mod. Phys. A 18 (2003), 651-672. https://doi.org/10.1142/S0217751X03012205
A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. https://doi.org/10.1007/BF00151525
B.S. Guilfoyle and B.C. Nolan, Yang's gravitational theory, Gen. Relativ. Gravit. 30 (1998), 473-495. https://doi.org/10.1023/A:1018815027071
M. Gutiérrez and B. Olea, Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker space, Differential Geom. Appl. 27 (2009), 146-156. https://doi.org/10.1016/j.difgeo.2008.06.015
J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations, in Gravitation: an Introduction to Current Research (Ed. L. Witten), John Wiley and Sons, Inc., New York, 49-101, 1962.
G.S. Hall, Ricci recurrent space times, Phys. Lett. A 56 (1976), 17-18. https://doi.org/10.1016/0375-9601(76)90010-4
S.W. Hawking and G.F.R. Ellis, The large-scale structure of spacetime, Cambridge Univ. Press, 1973. https://doi.org/10.1017/CBO9780511524646
T. Harko, F.S.N. Lobo, S. Nojiri, and S. D. Odintsov, f(R,T)-gravity, Phys. Rev. D 84 (2011), 024020. https://doi.org/10.1103/PhysRevD.84.024020
C.A. Mantica, U.C. De, Y.J. Suh, and L.G. Molinari, Perfect fluid spacetimes with harmonic generalized curvature tensor, Osaka J. Math. 56 (2019), 173-182.
C.A. Mantica and L.G. Molinari, Generalized Robertson-Walker spacetimes-a survey, Int. J. Geom. Methods Mod. Phys. 14 (2017), 1730001. https://doi.org/10.1142/S021988781730001X
C.A. Mantica, L.G. Molinari, and U.C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016), 022508. https://doi.org/10.1063/1.4941942
C.A. Mantica and L.G. Molinari, On the Weyl and the Ricci tensors of GRW space-times, J. Math. Physics 57 (2016), 102502. https://doi.org/10.1063/1.4965714
C.A. Mantica, Y.J. Suh, and U.C. De, A note on generalized Robertson-Walker space-times, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1650079. https://doi.org/10.1142/S0219887816500791
C.A. Mantica, L.G. Molinari, Y.J. Suh, and S. Shenawy, Perfect-fluid, generalized Robertson-Walker space-times, and Gray's decomposition, J. Math. Phys. 60 (2019), 052506. https://doi.org/10.1063/1.5089040
B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, Inc. 1983.
M. Prvanović, Extended recurrent manifolds, Izv. Vyssh. Uchebn. Zaved. Mat. 1999 (1999), 41-50.
H.S. Ruse, On simply harmonic spaces, J. Lond. Math. Soc. 21 (1946), 243-247. https://doi.org/10.1112/jlms/s1-21.4.243
R. Sharma, Proper conformal symmetries of space-times with divergence-free Weyl tensor, J. Math. Phys. 34 (1993), 3582-3587. https://doi.org/10.1063/1.530046
L.C. Shepley and A.H. Taub, Space-times containing perfect fluids and having a vanishing conformal divergence, Commun. Math. Phys. 5 (1967), 237-256. https://doi.org/10.1007/BF01646477
Z.I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y )•R = 0. I. The local version, J. Diff. Geom 17 (1982), 531-582. https://doi.org/10.4310/jdg/1214437486
H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), 384-411. https://doi.org/10.1007/BF01199420
K. Yano and S. Bochner, Curvature and Betti numbers, Ann. Math. Stud. 32, Princeton University Press, 1953. https://doi.org/10.1515/9781400882205