Solvability of Strongly Nonlinear Obstacle Parabolic Problems in Inhomogeneous Orlicz–Sobolev Spaces
DOI:
https://doi.org/10.15407/mag18.04.463Анотація
У цiй роботi ми доводимо iснування розв’язкiв для нелiнiйної одно-
бiчної задачi, пов’язаної з параболiчним рiвнянням
$$
\frac{\partial u}{\partial t}- \textrm{div } a(x,t,u,\nabla u) - \textrm{div } \Phi(x,t,u) = \mu \textrm{ in } Q_T = \Omega \times (0,T),
$$
де член нижчого порядку $\Phi$ задовольняє узагальнену природну умову зростання, описану певною функцiєю Орлича $\Psi$, i функцiя µ є iнтегров-
ним членом витоку. Жодних обмежень зростання не накладається анi
на $\Psi$, анi на його спряжене $\overline{\Psi}$. Отже, розв’язок є природним у цьому
контекстi.
Mathematical Subject Classification 2010: 35K55, 35Q68, 35Q35
Ключові слова:
однобiчна параболiчна задача, нерефлексивний простiр Орлича, природне зростанняПосилання
R. Adams, Sobolev Spaces, Academic Press Inc, New York, 1975.
A. Alvino, L. Boccardo, V. Ferone, L. Orsina, and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl. 182 (2003), No. 1, 53--79. https://doi.org/10.1007/s10231-002-0056-y
A. Alvino, V. Ferone, and G. Trombetti, A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl. (1998), 381--391.
A. Benkirane and A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. Ser. A: Theory Methods 36, (1999), 11--24. https://doi.org/10.1016/S0362-546X(97)00612-3
A. Benkirane, A. Youssfi, and M. El Moumni, Bounded solutions of unilateral problems for strongly nonlinear elliptic equations in Orlicz spaces, Electron. J. Qual. Theory Differ. Equ. 2013 (2013), 21.
C. Bennett and R. Sharpley, Interpolation of operators, Academic press, Boston, 1988.
J. Bennouna, M. Hammoumi, and A. Aberqi, Nonlinear degenerated parabolic equations with lower order terms, Electron. J. Math. Anal. Appl.4 (2016), 234--253.
M. Ben Cheikh Ali and O. Guibé, Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl. 16 (2006), 275--297.
L. Boccardo, A. Dall'Aglio, and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Semin. Mat. Fis. Univ. Modena 46-suppl. (1998), 51--81.
L. Boccardo and G.R. Cirmi, Existence and uniqueness of solution of unilateral problems with $L^1$- data, J. Convex Anal. 6 (1999), 195--206.
M. Bourahma, A. Benkirane, and J. Bennouna, Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces, Rend. Circ. Mat. Palermo (2) 69 (2020), 231--252. https://doi.org/10.1007/s12215-019-00399-z
M. Bourahma, A. Benkirane, and J. Bennouna, An existence result of entropy solutions to elliptic problems in generalized Orlicz--Sobolev spaces, Rend. Circ. Mat. Palermo (2) 70 (2021), 481--504. https://doi.org/10.1007/s12215-020-00506-5
M. Bourahma, J. Bennouna, and M. El Moumni, Existence of a weak bounded solutions for a nonlinear degenerate elliptic equations in Musielak spaces, Moroccan J. Pure Appl. Anal. 6 (2020), 16--33. https://doi.org/10.2478/mjpaa-2020-0002
M. Bourahma, A. Benkirane, J. Bennouna, and M. El Moumni, $L^∞$-bounds of solutions for a class of strongly nonlinear elliptic equations in Musielak spaces, Topol. Methods Nonlinear Anal. 56 (2020) 129--160. https://doi.org/10.12775/TMNA.2020.011
R. Di Nardo, F. Feo, and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), 161186. https://doi.org/10.1142/S0219530511001790
B. El Haji, M. El Moumni, and K. Kouhaila, On a nonlinear elliptic problems having large monotonocity with $L^1$-data in weighted Orlicz--Sobolev spaces, Moroccan J. Pure Appl. Anal. 5 (2019), 104--116. https://doi.org/10.2478/mjpaa-2019-0008
A. Elmahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Anal. 60 (2005), 1--35. https://doi.org/10.1016/S0362-546X(04)00331-1
A. Elmahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms and $L^1$ data in Orlicz spaces, Port. Math. 62 (2005), 143--183. https://doi.org/10.1016/S0362-546X(04)00331-1
J.P. Gossez, A strongly nonlinear elliptic problem in Orlicz--Sobolev spaces, Proc. Sympos. Pure Math. 45, Amer. Math. Soc., Providence, RI, 1986, 455--462. https://doi.org/10.1090/pspum/045.1/843579
J.P. Gossez, Surjectivity results for pseudo-monotone mappings in complementary systems, J. Math. Anal. Appl. 53 (1976), 484--494. https://doi.org/10.1016/0022-247X(76)90086-X
J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163--205. https://doi.org/10.1090/S0002-9947-1974-0342854-2
J.P. Gossez, Some approximation properties in Orlicz--Sobolev spaces. Stud. Math. 74 (1982), 17--24. https://doi.org/10.4064/sm-74-1-17-24
J.P. Gossez and V. Mustonen, Variationnal inequalities in Orlicz--Sobolev spaces, Nonlinear Anal. 11 (1987), 317--492. https://doi.org/10.1016/0362-546X(87)90053-8
E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. https://doi.org/10.1007/978-3-642-88044-5
M. Kbiri Alaoui, D. Meskine, and A. Souissi, On some class of nonlinear parabolic inequalities in Orlicz spaces, Nonlinear Anal. 74 (2011), 58635875. https://doi.org/10.1016/j.na.2011.04.048
M. Krasnosel'skii, Ya. Rutikii, Convex functions and Orlicz spaces, Groningen, Nordhooff, 1969.
M. Mabdaoui, H. Moussa, and M. Rhoudaf, Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces, Anal. Math. Phys. 7 (2017), 47--76. https://doi.org/10.1007/s13324-016-0129-5
J. Musielak, Orlicz spaces and modular spaces, Lecture Note in Mahtematics, 1034, Springer, Berlin, 1983. https://doi.org/10.1007/BFb0072210
A. Porretta, Existence results for strongly nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura Appl. (IV) 177, (1999), 143--172. https://doi.org/10.1007/BF02505907
H. Redwane, Existence Results For a Class of Nonlinear Parabolic Equations in Orlicz Spaces, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), 2. https://doi.org/10.14232/ejqtde.2010.1.2
H. Sabiki, M. Rhoudaf, and R. Elarabi, Existence results for a non-linear obstacle parabolic semicoercive problems with lower order term, Complex Var. Elliptic Equ. 64 (2019), 143--170. https://doi.org/10.1080/17476933.2018.1427077
J. Simon, Compact sets in $L^p(0, T;B)$, Ann. Mat. Pura Appl. 146 (1987), 65--96. https://doi.org/10.1007/BF01762360