Existence and Asymptotic Behavior of Beam-Equation Solutions with Strong Damping and p(x)-Biharmonic Operator
DOI:
https://doi.org/10.15407/mag18.04.488Анотація
У цiй роботi ми розглядаємо нелiнiйне рівняння балки із сильним демпфуванням та p(x)-бiгармонiчний оператор. Показник нелiнiйностi p(·) є заданою функцiєю, яка задовольняє певнi умови. Застосовуючи метод Фаедо–Ґалеркiна, ми довели iснування слабких розв’язкiв. Застосовуючи лему Такао, ми встановили асимптотичне поводження слабких розв’язкiв за м’яких припущень щодо показника p(·). Ми доводимо, що асимптотичне поводження слабкого розв’язку є експоненцiйно i алгебраїчно залежним вiд змiнного показника. Ця робота полiпшує та узагальнює багато iнших результатiв згаданих в лiтературi.
Mathematical Subject Classification 2010: 35A01, 35B40, 35D30, 35L25
Ключові слова:
слабки розв’язки, iснування, асимптотичне поводження, рiвняння балки, p(x)-бiгармонiчний оператор, змiнний показникПосилання
E. Acerbi and G. Mingione,Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris 334 (2002), 817--822. https://doi.org/10.1016/S1631-073X(02)02337-3
D. Andrade, M.A.J. Silva and T.F. Ma, Exponential stability for a plate equation with $p$-Laplacian and memory terms, Math. Methods Appl. Sci. 35 (2012), 417--426. https://doi.org/10.1002/mma.1552
S. Antontsev, Wave equation with $p(x,t)$-Laplacian and damping term: existence and blow-up, Differ. Equ. Appl. 3 (2011), 503--525. https://doi.org/10.7153/dea-03-32
S. Antontsev and J. Ferreira, Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal. 93 (2013), 62--77. https://doi.org/10.1016/j.na.2013.07.019
S. Antontsev and J. Ferreira, On a viscoelastic plate equation with strong damping and $p(x,t)$-Laplacian: existence and uniqueness, Differential Integral Equations 27 (2014), 1147--1170. https://doi.org/10.57262/die/1408366787
S. Antontsev and S.I. Shmarev, Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blow-up, Atlantis Press, Paris, 2015. https://doi.org/10.2991/978-94-6239-112-3
S.N. Antontsev and J.F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), 19--36. https://doi.org/10.1007/s11565-006-0002-9
S.N. Antontsev and S.I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), 515--545. https://doi.org/10.1016/S0362-546X(04)00393-1
Z. Bai, Z. Du, and S. Zhang, Iterative method for a class of fourth-order $p$-Laplacian beam equation, J. Appl. Anal. Comput. 9 (2019), 1443--1453. https://doi.org/10.11948/2156-907X.20180276
J. Benedikt and P. Drábek, Estimates of the principal eigenvalue of the $p$-biharmonic operator, Nonlinear Anal. 75 (2012), 5374--5379. https://doi.org/10.1016/j.na.2012.04.055
E.M. Bollt, R. Chartrand, S. Esedoglu, P. Schultz, and K.R. Vixie, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Adv. Comput. Math. 31 (2009), 61--85. https://doi.org/10.1007/s10444-008-9082-7
H. Bueno, L. Paes-Leme and H. Rodrigues, Multiplicity of solutions for $p$-biharmonic problems with critical growth, Rocky Mountain J. Math. 48 (2018), 425--442. https://doi.org/10.1216/RMJ-2018-48-2-425
Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383--1406. https://doi.org/10.1137/050624522
L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, Berlin, 2011. https://doi.org/10.1007/978-3-642-18363-8
J. Ferreira and S.A. Messaoudi, On the general decay of a nonlinear viscoelastic plate equation with a strong damping and $p(x,t)$-Laplacian, Nonlinear Anal. 104 (2014), 40--49. https://doi.org/10.1016/j.na.2014.03.010
Y. Fu and N. Pan, Existence of solutions for nonlinear parabolic problem with $p(x)$-growth, J. Math. Anal. Appl. 362 (2010), 313--326. https://doi.org/10.1016/j.jmaa.2009.08.038
B. Ge, Q.M. Zhou, and Y.H. Wu, Eigenvalues of the $p(x)$-biharmonic operator with indefinite weight, Z. Angew. Math. Phys. 66 (2015), 1007--1021. https://doi.org/10.1007/s00033-014-0465-y
J.W. Green and F.A. Valentine, On the A}zelà-Ascoli theorem, Math. Mag. 34 (1960/61), 199--202. https://doi.org/10.1080/0025570X.1961.11975217
A. Hao and J. Zhou, Blowup, extinction and non-extinction for a nonlocal $p$-biharmonic parabolic equation, Appl. Math. Lett. 64 (2017), 198--204. https://doi.org/10.1016/j.aml.2016.09.007
L. Kong, On a fourth order elliptic problem with a $p(x)$-biharmonic operator, Appl. Math. Lett. 27 (2014), 21--25. https://doi.org/10.1016/j.aml.2013.08.007
R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 217--237. https://doi.org/10.1017/S0308210500020242
L. Li and C. Tang, Existence and multiplicity of solutions for a class of $p(x)$-biharmonic equations, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), 155--170. https://doi.org/10.1016/S0252-9602(12)60202-1
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.
C. Liu and J. Guo, Weak solutions for a fourth order degenerate parabolic equation, Bull. Pol. Acad. Sci. Math. 54 (2006), 27--39. https://doi.org/10.4064/ba54-1-3
C. Liu and P. Li, A parabolic $p$-biharmonic equation with logarithmic nonlinearity, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), 35--48.
X. Liu, H. Chen, and B. Almuaalemi, Ground state solutions for $p$-biharmonic equations, Electron. J. Differential Equations 2017 (2017), 1--9.
Y. Liu, Existence and blow-up of solutions to a parabolic equation with nonstandard growth conditions, Bull. Aust. Math. Soc. 99 (2019), 242--249. https://doi.org/10.1017/S0004972718001181
M. Nakao, Asymptotic stability of the bounded or almost periodic solutions of the wave equation with nonlinear dissipative terms, J. Math. Anal. Appl. 58 (1977), 336--346. https://doi.org/10.1016/0022-247X(77)90211-6
G. Peano, Démonstration de l'intégrabilité des équations différentielles ordinaires, Math. Ann. 37 (1890), 182--228. https://doi.org/10.1007/BF01200235
W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, 1987.
M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0104029
J. Tiirola, Image denoising using directional adaptive variable exponents model, J. Math. Imaging Vision 57 (2017), 56--74. https://doi.org/10.1007/s10851-016-0666-4
C. Zhang and S. Zhou, A fourth-order degenerate parabolic equation with variable exponent, J. Partial Differ. Equ. 22 (2009), 376--392. https://doi.org/10.4208/jpde.v22.n4.6