Multiplicity of Solutions to a p-q Fractional Laplacian System with Concave Singular Nonlinearities
DOI:
https://doi.org/10.15407/mag18.04.514Анотація
У цiй роботi ми вивчаємо iснування множинних нетривiальних невiд’ємних слабких розв’язкiв сполученої системи елiптичних диференцiальних рiвнянь з частинними похiдними. Доведено iснування розв’язкiв на многовидi Негарi. Для доведення iснування щонайменше cat(Ω) +1 розв’язкiв використано категорiю Люстерника–Шнiрельмана, де Ω є обмеженою областю, в якiй розглянуто цю задачу.
Mathematical Subject Classification 2010: 35J35, 35J60
Ключові слова:
многовид Негарi, категорiя Люстерника–Шнiрельмана, сингулярнiсть, множиннiстьПосилання
C.O. Alves, D.C. de Morais Filno, and M.A. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal. 42 (2000), 771--787. https://doi.org/10.1016/S0362-546X(99)00121-2
C.O Alves, J.M. do Ó, and O.H. Miyagaki, On perturbations of a class of periodic $m$-laplacian equations with critical growth, Nonlinear Anal. 45 (2001), 849--863. https://doi.org/10.1016/S0362-546X(99)00421-6
A. Ambrosetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519--543. https://doi.org/10.1006/jfan.1994.1078
J.G. Azvrero and I.P. Aloson, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1992), 977--895. https://doi.org/10.1090/S0002-9947-1991-1083144-2
V. Benci and G. Cerami, The effects of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Ration. Mech. Anal. 114 (1991), 79--93. https://doi.org/10.1007/BF00375686
V. Benci, A.M. Micheletti, and D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, J. Differential Equations 184 (2002), 299--320. https://doi.org/10.1006/jdeq.2001.4155
W. Chen and S. Deng, The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities, Nonlinear Anal. Real World Appl. 27 (2016), 80--92. https://doi.org/10.1016/j.nonrwa.2015.07.009
C.Y. Chen and T.F. Wu, The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent, Appl. Math. Comput. 218 (2012), 10817--10828. https://doi.org/10.1016/j.amc.2012.04.026
D. Choudhuri, K. Saoudi, and K. Mouna, Existence and multiplicity of solutions to a $p-q$ Laplacian system with a concave and singular nonlinearities, preprint, arXiv{2005.05167}.
D. Choudhuri and A. Soni, Existence of multiple solutions to a partial differential equation involving the fractional $p$-Laplacian, J. Anal. 23 (2015), 33--46.
E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521--573. https://doi.org/10.1016/j.bulsci.2011.12.004
L. Ding and S. Xiao, Multiple positive solutions for a critical quasilinear elliptic systems, Nonlinear Anal. 72 (2010), 2592--2607. https://doi.org/10.1016/j.na.2009.11.007
L.C. Evans, Partial Differential Equations, Graduate studies in mathematics, 19, Amer. Math. Soc., Providence, RI, 1997.
H. Fan, Multiple positive solutions for a critical elliptic system with concave and convex nonlinearities, Nonlinear Anal. Real World Appl. 18 (2014), 14--22. https://doi.org/10.1016/j.nonrwa.2014.01.004
Y. Fu, H. Li, and P. Pucci, Existence of nonnegative solutions for a class of systems involving fractional ($p, q$)-Laplacian operators, Chin. Ann. Math. Ser. B 39 (2018), 357--372. https://doi.org/10.1007/s11401-018-1069-1
D. Goel, D. Kumar, and K. Sreenadh, Regularity and multiplicity results for fractional ($p,q$)-Laplacian equations, Commun. in Contemp. Math. 22 (2020), No. 8, 1950065. https://doi.org/10.1142/S0219199719500652
T.S. Hsu, Multiple positive solutions for a critical quasilinear elliptic system with concave convex nonlinearities, Nonlinear Anal. 71 (2009), 2688--2698. https://doi.org/10.1016/j.na.2009.01.110
G. Li, The existence of nontrivial solution to the $p-q$ Laplacian problem with nonlinearity asymptotic to $u^{p-1}$ at infinity in $R^N$, Nonlinear Anal. 68 (2008), 1100--1119. https://doi.org/10.1016/j.na.2006.12.008
G. Li and X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on $R^N$, Nonlinear Anal. 71 (2009), 2316--2334. https://doi.org/10.1016/j.na.2009.01.066
Q. Li and Z. Yang, Multiple positive solutions for quasilinear elliptic systems, Electron. J. Differential Equations 2013 (2013), 15.
Q. Li and Z. Yang, Multiplicity of positive solutions for a $p$-$q$-Laplacian system with concave and critical nonlinearities, J. Math. Anal. Appl. 423 (2015), 660--680. https://doi.org/10.1016/j.jmaa.2014.10.009
Q. Li and Z.D. Yang, Multiple positive solutions for quasilinear elliptic systems with critical exponent and sign-changing weight, Comput. Math. Appl. 67 (2014), 1848--1863. https://doi.org/10.1016/j.camwa.2014.03.018
S. Mosconi and M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal. 136 (2016), 84--101. https://doi.org/10.1016/j.na.2016.02.012
N.S. Papageorgiou, D.D. Repovš, and C. Vetro, Positive solutions for singular double phase problems, J. Math. Anal. Appl. 501 (2021), 123896 https://doi.org/10.1016/j.jmaa.2020.123896
O. Rey, A multiplicity results for a variational problem with lack of compactness, Nonlinear Anal. 13 (1989), 1241--1249. https://doi.org/10.1016/0362-546X(89)90009-6
K. Saoudi, S. Ghosh, and D. Choudhuri, Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity, J. Math. Phys. 60 (2019), 101509. https://doi.org/10.1063/1.5107517
N.E. Sidiripoulos, Existence of solutions to indefinite quasilinear elliptic problems of $p$-$q$-Laplacian type, Electron. J. Differential Equations 2010 (2010), 162.
W. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1
M.Z. Wu and Z.D. Yang, A class of $p-q$-Laplacian system with critical nonlinearities, Bound. Value Probl. 2009 (2009), 185319. https://doi.org/10.1155/2009/185319
H.H. Yin, Existence of multiple positive solutions for a $p-q$-Laplacian system with critical nonlinearities, J. Math. Anal. Appl. 403 (2013), 200--214. https://doi.org/10.1016/j.jmaa.2013.02.032
H.H. Yin and Z.D. Yang, Multiplicity of positive solutions to a $p-q$-laplacian equation involving critical nonlinearity, Nonlinear Anal. 75 (2012), 3021--3035. https://doi.org/10.1016/j.na.2011.11.035
M. Zhen, J. He, and H. Xu, Critical system involving fractional Laplacian, Commun. Pure Appl. Anal. 18 (2019), 237--253. https://doi.org/10.3934/cpaa.2019013