Busemann Functions in Asymptotically Harmonic Finsler Manifolds
DOI:
https://doi.org/10.15407/mag18.04.546Анотація
У цiй статтi ми вивчаємо функцiї Буземана як в загальнiй фiнслеровiй поставi, так i для асимптотично гармонiчних фiнслерових многовидiв. Зокрема, ми показуємо, що функцiї Буземана на асимптотично гармонiчних фiнслерових многовидах є гладкими.
Mathematical Subject Classification 2010: 53C22, 53B40, 53C60, 58J60
Ключові слова:
функцiя Буземана, асимптота, гармонiчний фiнслеровий многовид, асимптотично гармонiчний фiнслеровий многовидПосилання
P.D. Andreev, Geometric constructions in the class of Busemann non positive curved spaces, J. Math. Phys. Anal. Geom., 5 (2009), 25-37.
D.Bao, S.-S.Chern, and Z.Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1268-3
A. L. Besse, Einstein manifolds, Reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
E. Caponio and A. Masiello, Harmonic coordinates for the nonlinear Finsler Laplacian and some regularity results for Berwald metrics, Axioms 8 (2019), 83. https://doi.org/10.3390/axioms8030083
D. Egloff, Uniform Finsler Hadamard manifolds, Annal. H. Poincare, sec. A 66 (1997), 323--357.
Y. Ge, Z.Shen, Eigenvalues and eigenfunctions of metric measure manifolds, Proc. London Math. Soc. 82 (2001), 752--746. https://doi.org/10.1112/plms/82.3.725
Geometry, topology, and dynamics in negative curvature (Eds. C.S. Aravinda, F.T.Farrell, and J.-F. Lafont), Cambridge University Press, Cambridge, 2016.
N. Innami, Y. Itokawa, T. Nagano, and K. Shiohama, Affine functions and Busemann functions on complete Finsler manifold, Proc. Amer. Math. Soc. 149 (2021), 1723--1732. https://doi.org/10.1090/proc/15304
M. Kell, Sectional curvature-type conditions on metric spaces, J. Geom. Anal. 29 (2019), 616--655. https://doi.org/10.1007/s12220-018-0013-7
G. Knieper and N. Peyerimhoff, Geometric properties of rank one asymptotically harmonic manifolds, J. Diff. Geom. 100 (2015), 507--532. https://doi.org/10.4310/jdg/1432842363
V.B. Marenich, Horofunctions, Busemann functions, and ideal boundaries of open manifolds of nonnegative curvature, Sib. Math. J. 34 (1993) 883--897. https://doi.org/10.1007/BF00971404
S.Ohta, Splitting theorems for Finsler manifolds of nonnegative Ricci curvature, J. Reine Angew. Math. 700 (2015), 155--174. https://doi.org/10.1515/crelle-2013-0011
S.Ohta, K.-T.Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386--1433. https://doi.org/10.1002/cpa.20273
A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, Europ. Math. Soc., 2005. https://doi.org/10.4171/010
P. Petersen, Riemannian geometry, Springer-Verlag, New York, 2016. https://doi.org/10.1007/978-3-319-26654-1
A. Ranjan, H. Shah, Busemann functions in a harmonic manifold, Geom. Dedicata 101 (2003), 167--183. https://doi.org/10.1023/A:1026369930269
S.V. Sabau, The co-points of rays are cut points of upper level sets for Busemann functions, SIGMA 12 (2016), 36. https://doi.org/10.3842/SIGMA.2016.036
S.V. Sabau and P. Chansangiam, On the existence of convex functions on Finsler manifolds, Diff. Geom. Dynam. Systems (BJGA) 24 (2019), 93--103.
H. Shah and E.H. Taha, On harmonic and asymptotically harmonic Finsler manifolds, preprint, arXiv{2005.03616v3}.
Z. Shen, Lectures on Finsler geometry, World Scientific, 2001. https://doi.org/10.1142/4619
Z. Shen, Curvature, distance and volume in Finsler geometry, IHES preprint, 1997.
K. Shiga, Hadamard manifolds, Geometry of Geodesics and Related Topics, Adv. Stud. Pure Math. 3 (1984), 239--281.
K. Shiohama, Riemannian and Finsler geometry in the large, Recent Adv. Math., RMS-Lecture Note Series, 21, 2015, 163--179.
K. Shiohama and B. Tiwari, The global study of Riemannian-Finsler geometry, Geometry in history (Eds. S. Dani and A. Papadopoulos), Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-13609-3_16
C. Sormani, Busemann functions on manifolds with lower bounds on the Ricci curvature and minimal volume growth, J. Diff. Geom. 48 (1998), 557--585. https://doi.org/10.4310/jdg/1214460863
E. H. Taha, Harmonic Finsler manifolds of $(α,β)$-type, Balkan J. Geom. Appl. 27 (2022), 139--144.
L. Tamássy, Distance functions of Finsler spaces and distance spaces, Proceeding of the conference ''Differential Geometry and its Applications, 2008'', World Scientific, 2008, 559--570. https://doi.org/10.1142/9789812790613_0046
A. M. Zimmer, Boundaries of non-compact harmonic manifolds, Geom Dedicata 168 (2014), 339--357 . https://doi.org/10.1007/s10711-013-9833-6