The Gauss Map of Hypersurfaces in 2-Step Nilpotent Lie Groups

Автор(и)

  • Ye. V. Petrov Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine

Анотація

We consider smooth oriented hypersurfaces in 2-step nilpotent Lie groups with a left invariant metric. We derive an expression for the Laplacian of the Gauss map for such hypersurfaces in the general case and in some particular cases. In the case of CMC-hypersurface in the $(2m+1)$-dimensional Heisenberg group we also give necessary and sufficient conditions for the Gauss map to be harmonic and prove that for $m=1$ all CMC-surfaces with the harmonic Gauss map are "cylinders".

Mathematics Subject Classification: 53C40, 53C42, 53C43, 22E25.

Ключові слова:

2-step nilpotent Lie group, Heisenberg group, left invariant metric, Gauss map, harmonic map, minimal submanifold, constant mean curvature

Downloads

Як цитувати

(1)
Petrov, Y. V. The Gauss Map of Hypersurfaces in 2-Step Nilpotent Lie Groups. Журн. мат. фіз. анал. геом. 2006, 2, 186-206.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають