Homogenization of the Neumann–Fourier Problem in a Thick Two-Level Junction of Type 3:2:1

Автор(и)

  • T. A. Mel’‎nyk Faculty of Mathematics and Mechanics, Taras Shevchenko Kyiv National University, 64 Volodymyrska Str., Kyiv, 01033, Ukraine
  • P. S. Vashchuk Faculty of Mathematics and Mechanics, Taras Shevchenko Kyiv National University, 64 Volodymyrska Str., Kyiv, 01033, Ukraine

Анотація

We consider a mixed boundary-value problem for the Poisson equation in a two-level junction $\Omega_\varepsilon$ which is the union of a domain $\Omega_0$ and a large number of thin cylinders with cross-section of order $\mathcal{O}(\varepsilon^2)$. The thin cylinders are divided into two levels depending on their lengths. In addition, the thin cylinders from each level are $\varepsilon$-periodically alternated. The nonuniform Neumann conditions are given on the lateral sides of the thin cylinders from the first level and the uniform Fourier conditions are given on the lateral sides of the thin cylinders from the second level. We study the asymptotic behavior of the solution as $\varepsilon\to 0$. The convergence theorem and the convergence of the energy integral are proved.

Mathematics Subject Classification: 35B27, 35J25, 35C20, 35B25.

Ключові слова:

homogenization, multi-level junctions, asymptotic behavior of solutions

Downloads

Як цитувати

(1)
Mel’‎nyk, T. A.; Vashchuk, P. S. Homogenization of the Neumann–Fourier Problem in a Thick Two-Level Junction of Type 3:2:1. Журн. мат. фіз. анал. геом. 2006, 2, 318-337.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають