Approximation of Subharmonic Functions in the Unit Disk

Автор(и)

  • I. E. Chyzhykov Faculty of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytets'ka, 1, Lviv, 79000, Ukraine

Анотація

We prove that if $u$ is a subharmonic function in $\mathbb{D}=\{|z|<1\}$, then there exists an absolute constant $C$ and an analytic function $f$ in  $\mathbb{D}$  such that $\int_{\mathbb{D}} |u(z)-\log|f(z)||dm(z)<C$, where $m$ denotes the plane Lebesgue measure. We also (following the arguments of Lyubarskii and Malinnikova) answer Sodin's question, namely, we show that the logarithmic potential of measure $\mu$ supported in a square $Q$, with $\mu(Q)$ being an integer $N$, admits approximations by the subharmonic function $\log|P(z)|$, where $P$ is a polynomial with $\int_{Q} |\mathcal{U}_{\mu}(z)-\log|P(z)||dxdy=O(1)$, independent of $N$ and $\mu$. We also consider uniform approximations.

Mathematics Subject Classification: 31A05, 30E10.

Ключові слова:

subharmonic function, approximation, Riesz measure, analytic function

Downloads

Як цитувати

(1)
Chyzhykov, I. E. Approximation of Subharmonic Functions in the Unit Disk. Журн. мат. фіз. анал. геом. 2008, 4, 211-318.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.