An Inverse Spectral Problem W.R.T. Domain

Автор(и)

  • Yusif S. Gasimov Institute of Applied Mathematics, Baku State University, 23 Z. Khalilov Str., AZ1148 Baku, Azerbaijan

Анотація

Various practical problems, especially on hydrodynamics, elasticity theory, geophysics and aerodynamics, can be reduced to finding an optimal shape of a domain and studying its functionals.
In the paper, the inverse problem with respect to (w.r.t.) domain for two-dimensional Schrödinger operator and operator $L=\Delta^2$ is considered. The definition of s-functions is introduced. The method of determination of the domain by a given set of functions is proposed.
The main idea of the paper is to use a one-to-one correspondence between the convex bounded domains and their support functions and express the variation of the domain by the variation of corresponding support function.

Mathematics Subject Classification: 31B20, 49N45, 35R30, 65N21.

Ключові слова:

Shape optimization, inverse problems, domain variation, convex domains, support function

Downloads

Як цитувати

(1)
Gasimov, Y. S. An Inverse Spectral Problem W.R.T. Domain. Журн. мат. фіз. анал. геом. 2008, 4, 358-370.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.