On Subharmonic Functions of the First Order with Restrictions on the Real Axis
Анотація
Subharmonic functions $v$ of the first proximate order $\rho(r)$ with the integral $\displaystyle\int_0^R \frac{t^{1-\rho(t)}(v(t)+v(-t))}{1+t^2}dt$ bounded with respect to $R$ are studied. This is an extension of a result by N.I. Akhiezer, who studied the case $\rho(r)\equiv 1$, $v(z)=\ln |f(z)|$, where $f(z)$ is an entire function.
Mathematics Subject Classification: 31A05.
Ключові слова:
proximate order, functions of the class A, functions of completely regular growthDownloads
Як цитувати
(1)
Poedintseva, I. V. On Subharmonic Functions of the First Order with Restrictions on the Real Axis. Журн. мат. фіз. анал. геом. 2008, 4, 380-394.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.