On Subharmonic Functions of the First Order with Restrictions on the Real Axis

Автор(и)

  • I. V. Poedintseva Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine

Анотація

Subharmonic functions $v$ of the first proximate order $\rho(r)$ with the integral $\displaystyle\int_0^R \frac{t^{1-\rho(t)}(v(t)+v(-t))}{1+t^2}dt$ bounded with respect to $R$ are studied. This is an extension of a result by N.I. Akhiezer, who studied the case $\rho(r)\equiv 1$, $v(z)=\ln |f(z)|$, where $f(z)$ is an entire function.

Mathematics Subject Classification: 31A05.

Ключові слова:

proximate order, functions of the class A, functions of completely regular growth

Downloads

Як цитувати

(1)
Poedintseva, I. V. On Subharmonic Functions of the First Order with Restrictions on the Real Axis. Журн. мат. фіз. анал. геом. 2008, 4, 380-394.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.