On Universality of Bulk Local Regime of the Deformed Gaussian Unitary Ensemble

Автор(и)

  • T. Shcherbina B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine

Анотація

We consider the deformed Gaussian Ensemble $H_n=H_n^{(0)}+M_n$ in which $H_n^{(0)}$ is a hermitian matrix (possibly random) and $M_n$ is the Gaussian Unitary Ensemble (GUE) random matrix (independent of $H_n^{(0)}$ ). Assuming that the Normalized Counting Measure of $H_n^{(0)}$ converges weakly (in probability) to a nonrandom measure$N^{(0)}$ with a bounded support, we prove the universality of the local eigenvalue statistics in the bulk of the limiting spectrum of $H_n$.

Mathematics Subject Classification: 15A52, 15A57.

Ключові слова:

random matrices, universality, Gaussian Unitary Ensemble

Downloads

Як цитувати

(1)
Shcherbina, T. On Universality of Bulk Local Regime of the Deformed Gaussian Unitary Ensemble. Журн. мат. фіз. анал. геом. 2009, 5, 396-433.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.