Optimal Control Method for Solving the Cauchy-Neumann Problem for the Poisson Equation
DOI:
https://doi.org/10.15407/mag10.04.412Анотація
Розглянуто некоректну задачу Коші-Неймана для рівняння Пуассона. Задачу зведено до задачі оптимального керування. Для розв’язання одержаної задачі використано методи оптимізації.
Mathematics Subject Classification: 35J05, 35J25, 49J20, 49K20.
Ключові слова:
некоректна задача, задача Коші-Неймана, метод оптимального керування, рівняння ПуассонаПосилання
M.M. Amangaliyeva, M.T. Janaliyev, and K.B. Imanberdiyev, On an Optimization Method to the Solution of the Cauchy–Dirichlet Problem for the Poisson Equation. — J. Inv. Ill-Posed Problems 15 (2007), 1–10.
Y.S. Gasimov, On a Shape Design Problem for One Spectral Functional. — J. Inv. Ill-Posed Problems 21 (2013), No. 5, 629–637.
R.S. Gurbanov, N.B. Nuriyev, and R.S. Gurbanov, Technological Control and Optimization Problems in Oil Production: Theory and Practice. — Appl. Comput. Math. 12 (2013), No. 3, 314-324.
S.I. Kabanikhin, Inverse and ill-Posed Problems. Syb. Sci. Publishing, Novosibirsk, 2009.
O.A. Ladijenskaya, Moscow, 1973.
M.M. Lavrentev, On a Cauchy Problem for the Poisson Equation. — Izv. AS USSR, ser. Math. 20 (1955), No. 6, 819–842.
R. Lattes and J-L. Lions, Quazi-Reversibility Method and its Applications. Mir, Moscow, 1970.
J.L. Lions, Optimal Control of the Systems Described by the Partial Differential Equations. Nauka, Moscow, 1972.
M.A. Naimark, Linear Differential Operators. Nauka, Moscow, 1969. Boundary Problems of the Mathematical Physics. Nauka
V.A. Trenogin, Functional Analiysis. Nauka, Moscow, 1980.
A.N. Tikhonov and V.Ya.R. Arsenin, Methods to the Solution of the ill-Posed Problems. Nauka, Moscow, 1974.
F.P. Vasilev, Methods of Optimization. Faktorial, Moscow, 2002.