Various Types of Convergence of Sequences of Subharmonic Functions

Автор(и)

  • Nguyen Van Quynh V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine

DOI:

https://doi.org/10.15407/mag11.01.063

Анотація

Нехай $v_n(x)$ — послідовність субгармонічних функцій в області $G$. Вивчено умови, за яких зі збіжності послідовності $v_n(x)$ як послідовності узагальнених функцій випливає її збіжність у просторах Лебега $L_p(\gamma)$. Найбільш близькі до наших результати було отримано раніше в роботах Хермандера, а також Гришина і Шуігі. У роботі Хермандера досліджено випадок, коли $\gamma$ — деяке обмеження $m$-мірної міри Лебега, а в роботі Гришина і Шуігі розглянуто випадок $m = 2$. У статті розглянуто випадок $m>2$ і загальної міри $\gamma$.

Mathematics Subject Classification: 31A05, 30D30.

Ключові слова:

субгармонічна функція, міра Радона

Посилання

L. Hörmander, The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Springer–Verlag, Berlin–Heidelberg–New York–Tokyo, 1983.

A.F. Grishin and A. Chouigui, Various Types of Convergence of Sequences of δ-subharmonic Functions. — Math. Sb. 199 (2008), 27–48. (Russian) https://doi.org/10.1070/SM2008v199n06ABEH003943

N.S. Landkof, Foundations of Modern Potential Theory. Nauka, Moscow, 1966. (Russian)

N. Burbaki, Elements of Mathematics. Integration. Nauka, Moscow, 1977. (Russian)

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Springer–Verlag, Berlin–Heidelberg–New York–Tokyo, 1983.

Nguyen Van Quynh, About one Property of the Function x − y 2−m. — VisnykKharkiv. Univ., Ser. Mat. Prykl. Mat. Mekh. (2013), No. 1062, 50–56. (Russian)

Downloads

Як цитувати

(1)
Quynh, N. V. Various Types of Convergence of Sequences of Subharmonic Functions. Журн. мат. фіз. анал. геом. 2015, 11, 63-74.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.