Time Frequency Method of Solving One Boundary Value Problem for a Hyperbolic System and Its Application to the Oil Extraction
DOI:
https://doi.org/10.15407/mag12.02.101Анотація
Розглянуто граничну задачу, коли рух об'єкта описується двовимiрною лiнiйною системою диференцiальних рiвнянь в частинних похiдних гiперболiчного типу, де всерединi iнтервалу, що визначає фазову координату x, є розрив в однiй точцi. За допомогою методу рядiв i перетворення Лапласа за часом t (частотно-часовий метод) надано аналiтичний розв'язок для визначення дебiту Q(2l, t) i тиску P(2l, t), який може бути ефективним при обчисленнi коефiцiєнта гiдравлiчного опору в пiдйомнику при видобутку нафти газлiфтним способом, де l є глибина свердловини. Для випадку, коли граничнi функцiї є експоненцiального виду, отримано формули для P(2l, t) i Q(2l, t) виду, що залежить тiльки вiд t. Показано, що при постiйних граничних функцiях цi формули дозволяють визначити коефiцiєнт гiдравлiчного опору в пiдйомнику газлiфтної свердловини, який визначає змiну динамiки забруднення.
Mathematics Subject Classification: 65M38, 35L02, 35L40, 58J45, 58J90.
Ключові слова:
гіперболічне рівняння, крайові задачі, метод рядів, перетворення Лапласа, частотно-часовий метод, газліфт, коефіцієнт гідравлічного опоруПосилання
V.I. Shurov, Technology and Techniques of Oil Recovery. Nedra, Moscow, 1983.
E. Camponogara, A. Plucenio, A.F. Teixeira, and S.R.V. Campos, An Automation System for Gas-Lifted Oil Wells: Model Identification Control and Optimization. — J. Petroleum Sci. and Engineering 70 (2010), 157–167. https://doi.org/10.1016/j.petrol.2009.11.003
F.A. Aliev, N.A. Ismailov, and N.S. Mukhtarova, Algorithm to Determine the Optimal Solution of a Boundary Control Problem. — Automation and Remote Control 76 (2015), No. 4, 627–633.
F.A. Aliev, M.Kh. Ilyasov, and M.A. Dzamalbekov, Modeling of Work of Gas-Lift Wells. — Rep. of NAS of Azerbaijan 4 (2008), 30–41.
F.A. Aliev, M.Kh. Ilyasov, and N.B. Nuriev, The Problems of Modeling and Optimal Stabilization of Gas Lift Process. — Appl. Mechanics (2010), No. 6, 115–122.
F.A. Aliev, M.M. Mutallimov, I.M. Askerov, and I.S. Raguimov, Asymptotic Method of Solution for a Problem of Construction of Optimal Gas-lift Process Modes. Mathematical Problems in Engineering (2010), Article ID 191053, 10 pages.
F.A. Aliev, N.A. Aliev, K.G. Hasanov, A.K. Turarov, A.P. Guliev, and G.V.Isaeva, Numerical-Analytical Method for Solving of the First Order Partial Quasi-Linear Equations, TWMS J. — Pure Appl. Math. 6 (2015), No. 2, 158–164.
M. Ashraf, S. Asghar, and M.A. Hossain, The Computational Study of the Effects of Magnetic Field and Free Stream Velocity Oscillation on Boundary Layer Flow Past a Magnetized Vertical Plate. — Appl. Comput. Math. 13 (2014), No. 2, 175–193.
A.Kh. Mizadjanzadeh, I.M. Ametov, A.M. Khasaev, and V.I. Gusev, Technology and Technique of Oil Extractions. Nedra, Moscow, 1986.
F.A. Aliev, M.M. Mutallimov, N.A. Ismailov, and M.F. Racabov, An Algorithm for Constructing Optimal Controllers for Gaslift Operation. — Automation and Remote Control 73 (2012), No. 8, 12791289.
F.A. Aliev, M.A. Djamalbekov, and M.Kh. Ilyasov, Mathematical Simulation and Control of Gas-Lift. — J. Computer and Systems Sciences International 50 (2011), No. 1, 805–814.
F.A. Aliev and N.A. Ismailov, Problems of Optimization with the Periodic Boundary Condition and Boundary Control in Gas Lift Wells. — Nonlinear Vibrations (2014), No. 2, 216–227.
A.P. Guliev, M.Kh. Ilyasov, N.A. Aliev, and F.A. Aliev, The Algorithm for Solving the Problem of Determining the Motion of Space Process. — Proc. IAM 2 (2013), No. 1, 91–97.
A.O. Gelfand, Calculation of Finite Differences. Nauka, Moscow, 1967.
N.A. Aliev, F.A. Aliev, A.P. Guliev, and M.Kh. Ilyasov, Method of Series in the Solution of One Boundary Problem for the System of Hyperbolic Type Equations, Arising in the Oil Production. — Proc. IAM 2 (2013), No. 2, 113–136.
S. Alkan and A. Secer, Solution of Nonlinear Fractional Boundary Value Problems with Nonhomogeneous Boundary Conditions. — Appl. Comput. Math. 14 (2015), No. 3, 284–295.
J. Rashidinia, M. Khazaei, and H. Nikmarvani, Spline Collocation Method for Solution of Higher Order Linear Boundary Value Problems, TWMS J. — Pure Appl. Math. 6 (2015), No. 1, 38–47.
L.K. Vashisht, Brief Paper. Banach Frames Generated by Compact Operators Associated with a Boundary Value Problem, TWMS J. — Pure Appl. Math. 6 (2015), No. 2, 254–258.
F.A. Aliev and N.A. Ismailov, Inverse Problem to Determine the Hydraulic Resistance Coefficient in the Gas Lift Process. — Appl. Comput. Math. 12 (2013), No. 3, 306–313.
F.A. Aliev, N.A. Ismailov, and A.A. Namazov, Asymptotic Method for Finding the Coefficient of Hydraulic Resistance in Lifting of Fluid on Tubing. — Inverse and Ill Posed Problems 23 (2015), No. 5, 511–518.
G.D. Birkhoff, On the Asymptotic Character of the Solutions of Certain Linear Differential Equations Containing a Parameter. — Trans. Am. Math Soc. 9 (1908), 219–231; Boundary Value and Expansion Problems of Ordinary Linear Differential Equations. AMS 9 (1908), No. 4.
A. Erdeyi, Asymptotic Decompositions. Moscow, 1962.
S. Tiwari and M. Kumar, An Initial Value Technique to Solve Two-Point NonLinear Singularly Perturbed Boundary Value Problems. — Appl. Comput. Math. 14 (2015), No. 2, 150–157.
Hector Vazquez-Leal, The Enhanced Power Series Method to Find Exact or Approximate Solutions of Nonlinear Differential Equations. — Appl. Comput. Math. 14 (2015), No. 2, 168–179.
M.A. Lavrentyev and V.V. Shabat, Methods of Theory of Functions of Complex Variables. Nauka, Moscow, 1973.
Z.O. Melnik, Solution of a Mixed Problem for Hyperbolic Equations with Discontinuous Coefficients. — Differ. Eqs. 2 (1966), No. 4, 560–570.
M. Mohammadi, R. Mokhtari, and H. Panahipour, Solving Two Parabolic InverseProblems with a Nonlocal Boundary Condition in the Reproducing Kernel Space.-- Appl. Comput. Math. 13 (2014), No. 1, 91