On Weakly Periodic Gibbs Measures of the Potts Model with a Special External Field on a Cayley Tree
DOI:
https://doi.org/10.15407/mag12.04.302Анотація
Вивчено модель Поттса з q-станами (де q = 3, 4, 5, ... ) i зi спецiальним зовнiшнiм полем на деревi Келi порядку k ≥ 2. Для антиферомагнiтної моделi Поттса з такими зовнiшнiми полями при k ≥ 6 доведено неєдинiсть слабкоперiодичної (неперiодичної) мiри Гiббса. Також вивчено слабкоперiодичнi мiри Гiббса для моделi Поттса з нульовим зовнiшнiм полем. Доведено, що за деяких умовах таких мiр може бути не менш нiж 2q - 2.
Mathematics Subject Classification: 82B26, 60K35.
Ключові слова:
дерево Келі, міра Гіббса, модель Поттса, слабкоперiодичі мiриПосилання
H.O. Georgii, Gibbs Measures and Phase Transitions. de Gruyter, Berlin, 1988.
C.J. Preston, Gibbs States on Countable Sets. Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974.
Ya.G. Sinai, Theory of Phase Transitions: Rigorous Results. Nauka, Moscow, 1980. (Russian). (Engl. transl.: Intl. Series Nat. Philos., Vol. 108), Pergamon Press, Oxford, 1982.
U.A. Rozikov, Gibbs measures on Cayley trees. World scientific, 2013.
N.N. Ganikhodzhaev, Pure Phases of the Ferromagnetic Potts Model with Three States on a Second-Order Bethe Lattice. — Theor. Math. Phys. 85 (1990), No. 2, 1125–1134.
N.N. Ganikhodzhaev, Pure Phases of the Ferromagnetic Potts Model on the Bethe Lattice. — Dokl. AN RUz 67 (1992), 4–7.
N.N. Ganikhodzhaev and U.A. Rozikov, Description of Periodic Extreme Gibbs Measures of Some Lattice Models on the Cayley Tree. — Theor. Math. Phys. 111 (1992), No. 1, 480–486.
N.N. Ganikhodzhaev and U.A. Rozikov, The Potts Model with Countable Set of Spin Values on a Cayley Tree. — Lett. Math. Phys. 75 (2006), No. 2, 99–109.
C. Külske, U.A. Rozikov, and R.M. Khakimov, Description of Translation-Invariant Splitting Gibbs Measures for the Potts Model on a Cayley Tree. — J. Stat. Phys. 156 (2014), No. 1, 189–200.
U.A. Rozikov and N.N. Ganikhodzhaev, On Weak Periodic Gibbs Measures of Ising Model on Cayley Trees. — Theor. Math. Phys. 156 (2008), No. 2, 1218–1227.
U.A. Rozikov and M.M. Rakhmatullaev, Weakly Periodic Ground States and Gibbs Measures for the Ising Model with Competing Interactions on the Cayley Tree. — Theor. Math. Phys. 160 (2009), No. 3, 1292–1300.
M.M. Rakhmatullaev, Weakly Periodic Gibbs Measures and Ground States for the Potts Model with Competing Inter-Actions on the Cayley Tree. — Theor. Math. Phys. 176 (2013), No. 3, 1236–1251.
M.M. Rakhmatullaev, The Existence of Weakly Periodic Gibbs Measures for the Potts Model on a Cayley Tree. — Theor. Math. Phys. 180 (2014), No. 3, 1019– 1029.
N.N. Ganikhodjaev and U.A. Rozikov, Group Representation of the Cayley Forest and Some of its Applications. — Izvestiya: Math. 67 (2003), No. 1, 17–27.
N.N. Ganikhodjaev, Group Representations and Automorphisms of a Cayley Tree. — Dokl. AN RUz 4 (1994), 3–5.
H. Kesten, Quadratic Transformations: a Model for Population Growth. I. — Adv.Appl. Probab. 2 (1970), 1–82. https://doi.org/10.2307/3518344