Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
DOI:
https://doi.org/10.15407/mag13.02.107Анотація
Знайдено точнi достатнi умови обмеженостi дробових похiдних обмеженої аналiтичної функцiї в кутi Штольца. Для функцiй, якi задовольняють F ≠ 0 в одиничному крузi, встановлено необхiднi i достатнi умови обмеженостi дробових похiдних її аргумента в кутi Штольца.
Mathematics Subject Classification: 30D50.
Ключові слова:
обмежена аналітична функція, кут Штольца, добуток Бляшке, дробова похіднаПосилання
P.R. Ahern and D.N. Clark, Radial Nth derivatives of Blaschke products. — Math. Scan. 72 (1971), 189–201. https://doi.org/10.7146/math.scand.a-11015
P.R. Ahern and D.N. Clark, On Inner Functions with H p -derivatives. — Michigan Math. J. 21 (1974), 115–127.
A. Baranov, A. Hartmann, and K. Kellay, Geometry of Reproducing Kernels in Model Spaces Near the Boundary. arXiv: 1509.09077v1, 30Sep2015, 19 pp.
C. Carathéodory, Theory of Functions of a Complex Variable, V. 2. Chelsea Publ. Co., New York, 1954.
G.T. Cargo, Angular and Tangential Limits of Blaschke Products and their Successive Derivatives. — Canad. J. Math 14 (1962), 334–348. https://doi.org/10.4153/CJM-1962-026-2
I.Chyzhykov, Argument of Bounded Analytic Functions and Frostman’s Type Conditions. — Ill. J. Math. 53 (2009), No. 2, 515–531.
E.F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets. Cambridge Univ. Press, 1966.
M.M. Djrbashain, Integral Transforms and Representations of Functions in a Complex Domain. Nauka, Moscow, 1966. (Russian)
P. Duren, Theory of H p Spaces. Academic Press, New York, 1970.
D. Gilera, J.A. Peláez, and D. Vukotić, Itergrability of the Derivative of a Blaschke Product. — Proc. Edinburg Math. Soc. 50 (2007), 673-688. MR 2360523
G.M. Golusin, Geometric Theory of Functions of a Complex Variable. Nauka, Moscow, 1966. (Russian)
O. Frostman, Sur le Produits de Blaschke. — K. Fysiogr. Sallsk. Lund Forh. 12 (1939), 1–14.
K.-K. Leung and C.N. Linden, Asymptotic Values of Modulus 1 of Blaschke Products. — Trans. Amer. Math. Soc. 203 (1975), 107–118. https://doi.org/10.2307/1997072
A.V. Rybkin, Convergence of Arguments of Blaschke Products in Lp -metrics. — Proc. Amer. Math. Soc. 111 (1991), 701–708. https://doi.org/10.2307/2048407
S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives:Theory and Applications. Gordon and Breach, Yverdon, 1993.