Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
DOI:
https://doi.org/10.15407/mag13.02.154Анотація
Розглянуто початково-крайову задачу для параболiчного рiвняння, що описує нестацiонарну дифузiю у пористих середовищах з нелiнiйним поглинанням на межi та переносом рiдиною речовин, що дифундують. Доведено iснування єдиного розв'язку задачi. Вивчено асимптотичну поведiнку послiдовностi розв'язкiв, коли масштаб мiкроструктури прямує до нуля, та побудовано усереднену модель дифузiї.
Mathematics Subject Classification: 35Q74.
Ключові слова:
усереднення, нестаціонарна дифузія, нелінійна крайова умова, усереднена модельПосилання
N.S. Bakhvalov and G.N. Panasenko, Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Nauka, Moscow, 1984. (Russian)
A. Beliaev, Homogenization of a Parabolic Operator with Signorini Boundary Conditions in Perforated Domains. — Asymptot. Anal. 40 (2004), 255–268.
A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, Amsterdam–New York–Oxford, 1978.
L.V. Berlyand and M.V. Goncharenko, Homogenization of the Diffusion Equation in Porous Media with Absorptions. — Teor. Funkts., Func. Analis i ikh Prilozhen. 52 (1989), 112–121. (Russian)
B. Cabarrubias and P. Donato, Homogenization of a Quasilinear Elliptic Problem with Nonlinear Robin Boundary Condition. — Appl. Anal.: An Intern. J. 91 (2012), No. 6, 1111–1127.
B. Calmuschi and C. Timofte, Upscaling of Chemical Reactive Flows in Porous Media. ¡¡Caius Iacob¿¿ Conference on Fluid Mechanics and Texnical Appl., Bucharest (2005), 1–9.
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Applied Mathematical Scienses, 136, Springer-Verlag, New York, 1999.
D. Cioranescu and P. Donato, Homogenesation du Proble‘me de Neumann non Homoge‘ne dans des Ouverts Perfores. — Asymptot. Anal. 1 (1988), 115–138.
D. Cioranescu, P. Donato, and R. Zaki, The Periodic Unfolding and Robin Problems in Perforated Domains. — C.R.A.S. Paris, Ser. 1 342 (2006), 467–474.
C. Conca, J. Diaz, and C. Timofte, Effective Chemical Processes in Porous Media. — Math. Models and Methods Appl. Sci. 13 (2003), No. 10, 1437–1462.
C. Conca, J. Diaz, A. Linan, and C. Timofte, Homogenization in Chemical Reactive Floes. — Electron. J. Diff. Eq. 40 (2004), 1–22.
M.V. Goncharenko and L.A. Khilkova, Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption at the Boundary. — Ukr. Matem. Zhurn. 67 (2015), No. 9, 1201–1216. (Russian)
M.V. Goncharenko and L.A. Khilkova, Homogenized Model of Diffusion in a LocallyPeriodic Porous Media with Nonlinear Absorption at the Boundary. — Dopovidi NANU 10 (2016), No. 6. (Russian)
K. Iosida, Functional Analysis. Mir, Moscow, 1967. (Russian)
A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis. Fizmatlit, Moscow, 2004. (Russian)
O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid. Nauka, Moscow, 1970. (Russian)
O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow, 1967. (Russian)
V.A. Marchenko and E.Ya. Khruslov, Homogenized Models of MicroInhomogeneous Media. Naukova dumka, Kiev, 2005. (Russian)
V.G. Maz’ya, Sobolev Spaces. Izdatel’stvo LGU, Leningrad, 1985. (Russian)
T.A. Mel’nyk and D.Yu. Sadovyy, Homogenization of Quasilinear Parabolic Problem with Different Nonlinear Boundary Conditions Fourier Alternating in a Thick TwoLevel Junction of the Type 3:2:2. — Ukr. Matem. Zhurn. 63 (2011), No. 12, 1632– 1656. (Ukrainian)
T.A. Mel’nyk and O.A. Sivak, Asymptotic Analysis of a Boundary-Value Problem with the Nonlinean Multiphase Interactions in a Perforated Domain. — Ukr. Matem. Zhurn. 61 (2009), No. 4, 494–512.
T.A. Mel’nyk and O.A. Sivak, Asymptotic Analysis of a Parabolic Semilinear Problem with the Nonlinean Boundary Multiphase Interactions in a Perforated Domain. — J. Math. Sci. 164 (2010), No. 3, 1–27.
T.A. Mel’nyk and O.A. Sivak, Asymptotic Approximations for Solutions to Quasilinear and Linear Parabolic Problems with Different Perturbed Boundary Conditions in Perforated Domains. — J. Math. Sci. 177 (2011), No. 1, 50–70.
O.A. Oleinik, G.A. Yosifian, and A.S. Shamaev, Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media. Izdatel’stvo MGU, Moscow, 1990. (Russian)
A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Academic Publishers, Dordrecht–Boston–London, 1997. https://doi.org/10.1007/978-94-015-8957-4
A.L. Piatnitski, G.A. Chechkin, and A.S. Shamaev, Homogenization: Methods and Applications. Tamara Rozhkovskaya Press, Novosibirsk, 2007. (Russian)
A. Piatnitski and V. Rybalko, Homogenization of Boundary Value Problems for Monotone Operators in Perforated Domains with Rapidly Oscillating Boundary Conditions of Fourier Type. — J. Math. Sci. 177 (2011), No. 1, 109–140.
E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer-Verlag, New York, 1980.
R.E. Showalter, Monotone Operators in Banach Space and NonlinearPartial Differential Equations. AMS, Providence, 1997.
L. Tartar, The General Theory of Homogenization. A Personalized Introduction. Springer, Heidelberg–Dordrecht–London–New York, 2009.
C. Timofte, Homogenization in Nonlinear Chemical Reactive Flows. Proc. of the 9th WSEAS Intern. Conference on Appl. Math., Istambul (2006), 250–255.
C. Timofte, On the Homogenization of a Climatization Problem. — Studia Univ. ¡¡Babes-Bolyai¿¿ LII (2007), No. 2, 117–125.
C. Timofte, Multiscale Analysis of Ionic Transport in Periodic Charged Media. — Biomath 2 (2013), No. 2, 1–5.
C. Timofte, N. Cotfas, and G. Pavel, On the Asymptotic Behaviour of Some Elliptic Problems in Perforated Domains. Romanian Reports in Phys. 64 (2012), No. 1, 5– 14.
V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Oper-ators. Fizmatlit, Moscow, 1993. (Russian)