Approximate Solving of the Third Boundary Value Problems for Helmholtz Equations in the Plane with Parallel Cuts
DOI:
https://doi.org/10.15407/mag13.03.254Анотація
У роботi запропоновано метод наближеного розв'язання крайових iнтегральних рiвнянь вихiдної задачi. Систему крайових iнтегральних рiвнянь цiєї задачi одержано методом параметричного зображення iнтегральних перетворень. Збiжнiсть наближених розв'язкiв до точного розв'язку вихiдної проблеми гарантовано твердженнями, доведеними в цiй роботi. Знайдено також швидкiсть збiжностi наближених розв'язкiв до точного розв'язку.
Mathematics Subject Classification: 45P05, 45L05.
Ключові слова:
наближений розв'язок крайових інтегральних рівнянь, сингулярне інтегральне рівняння, існування наближеного розв'язку, швидкість збіжності наближеного розв'язкуПосилання
A.S. Il’insky, A.Ja. Slepjan and G.Ja. Slepjan, Propagation, Diffraction and Dissipation of Electromagnetic Waves, The IEE and Peter Peregrinous Ltd., Electromagnetic Waves (Series 36), London, UK, 1993.
N.I. Akhiezer, Lectures on Integral Transforms. Translations of Mathematical Monographs, 70, Amer. Math. Soc., Providence, RI, 1988.
Yu.V. Gandel, Parametric Representations of Integral and Psevdodifferential Operators in Diffraction Problems, Proc. 10th Int. Conf. on Math. Methods in Electromagnetic Theory, Dnepropetrovsk, Ukraine, Sept. 14–17, 2004, 57–62.
Yu.V. Gandel’, Boundary-Value Problems for the Helmholtz Equation and their Discrete Mathematical Models, J. Math. Sci. 171 (1990), No. 1, 74–88.
Yu.V. Gandel and V.D. Dushkin, The Method of Parametric Representations of Integral and Pseudo-differential Operators in Diffraction Problems on Electrodynamic Structures, Proceedings of the International Conference Days on Diffraction DD 2012, 28 May–1 June, 2012, 76–81.
Yu.V. Gandel and V.D. Dushkin, Mathematical Models of Two-Dimensional Diffraction Problems: Singular Integral Equations and Numerical Methods of Discrete Singularities Method, Academy of IT of the MIA of Ukraine, Kharkiv, 2012 (Russian).
S.M. Belotserkovsky and I.K. Lifanov, Method of Discrete Vortices, CRC Press, New York, 1993.
I.K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, Netherlands, Tokyo, Japan, 1996.
Yu.V. Gandel’ and T.S. Polyanskaya, Justification of a Numerical Method for Solving Systems of Singular Integral Equations in Diffraction Grating Problems, Differ. Equ. 39 (2003), I. 9, 1295–1307.
Yu.V. Gandel’, S.V. Eremenko, and T.S. Polyanskaya, Mathematical Problems in the Method of Discrete Currents. Justification of the Numerical Method of Discrete Singularities of Solutions of Two-Dimensional Problems of Diffraction of Electromagnetic Waves, Educational aid. Part II, Kharkov State University, Kharkov, 1992 (Russian).
V.D. Dushkin, The Justification of Numerical Solution of Boundary Integral Equations of Wave Scattering Problems on Impedance Lattice, Visn. Kharkiv. Nats. Univ. No. 1120, Mat. Prikl. Mat. Mekh. (2014), Issue 69, 20–28.
Yu.V. Gandel’ and V.D. Dushkin, The Approximate Method for Solving the Boundary Integral Equations of the Problem of Wave Scattering by Superconducting Lattice, Am. J. App. Mathematics and Statistics 2 (2014), No. 6, 369–375.
Yu.V. Gandel’ and V.D. Dushkin, The Boundary Integral Equations of the Third 2 Boundary-Value Problem for the Helmholtz Equation in the R+ with Plane-Parallel Slits, Dopov. Nats. Akad. Nauk Ukr. 8 (2014), 14–19 (Russian).
Yu.V. Gandel’, V.F. Kravchenko, and V.I. Pustovoit, Scattering of Electromagnetic Waves by a Thin Superconducting Band, Dokl. Math. 54 (1996), No. 3, 959–961.
Yu.V. Gandel’, Introduction to Methods of Evaluation of Singular and Hypersingular Integrals, Izd. Kharkov. Nats. Univ., Kharkov, 2002 (Russian).
S.S. Kutateladze, Fundamentals of Functional Analysis, Kluwer Academic Publishers Group, Dordrecht, Netherlands, 1996.
I.P. Natanson, Constructive Function Theory, 1, Frederic Ungar Puplishing Co., New York, 1964.
B.G. Gabdulkhaev, The Optimal Approximation of Solutions of Linear Problems, Kazan. Univ. Publishing, Kazan, 1980 (Russian).
Yu.V. Gandel’ and G.L. Sidel’nikov, The Method of Integral Equations in the Third Boundary-Value Problem of Diffraction on a Bounded Grating Over a Flat Screen, Differ. Equ. 35 (1999), No. 9, 1169–1175.
Yu.V. Gandel’ and V.D. Dushkin, Mathematical Model of Polarized Wave Scattering on Impedance Strips located on Screened Dielectric Layer, Mat. Metodi Fiz.-Mekh. Polya 57 (2014), No. 1, 125–132.
Yu.V. Gandel’ and V.D. Dushkin, Mathematical Model of Polarized Wave Scattering on Impedance Strips located on Screened Dielectric Layer, J. Math. Sci. 212 (2016), No. 2, 156–166.
V.D. Dushkin,Mathematical Models of Plane Wave Scattering on MultilayerImpedance Structures, Visn. Lviv. Univ. Prikl. Mat. Inform. No. 20 (2013), 69–76.