Toeplitz Operators with Radial Symbols on Bergman Space and Schatten-von Neumann Classes

Автор(и)

  • Z. Bendaoud Faculté des Sciences, Université Amar Telidji-Laghouat, B.P. 37G, route de Ghardaia, Laghouat 03000, Algérie
  • S. Kupin Institut de Mathématiques de Bordeaux UMR5251, CNRS, Université de Bordeaux, 351 ave. de la Libération, 33405 Talence Cedex, France
  • K. Toumache Faculté des Sciences Exactes, des Sciences de la Nature et de la Vie, Université Mohamed Khider-Biskra, B.P. 145, Biskra 07000, Algérie
  • B. Touré Faculté des Sciences et des Techniques, Université des Sciences, des Techniques et des Technologies de Bamako, Campus Universitaire de Badalabougou à Bamako, B.P. E-3206, Bamako, Mali
  • R. Zarouf Institut de Mathématiques de Marseille, UMR 7373, Aix-Marseille Université, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France

DOI:

https://doi.org/10.15407/mag16.01.003

Анотація

У цій роботі ми вивчаємо спектральні властивості операторів Тепліца з (квазі)радіальними символами на просторі Бергмана. Точніше, проблема, яка нас цікавить, полягає в тому, щоб зрозуміти коли даний оператор Теплиця належить класу Шаттена-фон Ноймана. Для розвинення цього напряму використано методи теорії апроксимації (тобто поліноми Лежандра).

Mathematics Subject Classification: 47B35, 30H20, 42C10.

Ключові слова:

оператори Тепліца, (квазі)радіальні символи, простори Бергмана, класи Шаттена-фон Ноймана, поліноми Лежандра.

Посилання

R. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975; exists also as: R. Adams and J. Fournier, Sobolev Spaces, 2nd ed., Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003.

P. Ahern and Z. Cuckovic, Products of Toeplitz operators on the Bergman space, Illinois J. Math. 45 (2001), No. 1, 113–121. https://doi.org/10.1215/ijm/1258138257

G. Arfken and H. Weber, Mathematical Methods for Physicists, 5th ed., Harcourt/Academic Press, Burlington, MA, 2001.

S. Axler, Bergman spaces and their operators, Surveys of some recent results in operator theory, I, Pitman Res. Not. Math. Ser., 171, Longman Sci. Tech., Harlow, 1988, 1–50.

Z. Cuckovic and N. Rao, Mellin transform, monomial symbols, and commuting Toeplitz operators, J. Funct. Anal. 154 (1998), No. 1, 195–214. https://doi.org/10.1006/jfan.1997.3204

A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, II, Based on notes left by Harry Bateman, Reprint of the 1953 original, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.

Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), U.S. Government Printing Office, Washington, DC, 1964.

H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-0497-8

A. Hui, Monomials in terms of Legendre polynomials, 2015, available from: https://math.stackexchange.com/questions/1586202/ monomials-in-terms-of-legendre-polynomials/1586525#1586525.

I. Gohberg, S. Goldberg, and M. Kaashoek, Basic Classes of Linear Operators, Birkhäuser, Basel, 2003. https://doi.org/10.1007/978-3-0348-7980-4

S. Grudsky and V. Vasilevski, Bergman–Toeplitz operators: radial component influence, Integr. Eq. Oper. Theory 40 (2001), 16–33. https://doi.org/10.1007/BF01202952

S. Grudsky, A. Karapetyants, and V. Vasilevski, Dynamics of properties of Toeplitz operators with radial symbols, Integr. Eq. Oper. Theory 50 (2004), No. 2, 217–253. https://doi.org/10.1007/s00020-003-1295-z

B. Korenblum and K. Zhu, An application of Tauberian theorems to Toeplitz operators, J. Operator Theory 33 (1995), No. 2, 353–361.

I. Louhichi and L. Zakariasy, On Toeplitz operators with quasi-homogeneous symbols, Arch. Math. (Basel) 85 (2005), No. 3, 248–257. https://doi.org/10.1007/s00013-005-1198-0

I. Louhichi, E. Strouse, and L. Zakariasy, Products of Toeplitz operators on the Bergman space, Integr. Eq. Oper. Theory 54 (2006), No. 4, 525–539. https://doi.org/10.1007/s00020-005-1369-1

I. Louhichi, F. Randriamahaleo and L. Zakariasy, On the commutativity of a certain class of Toeplitz operators, Concr. Oper. 2 (2015), 1–7. https://doi.org/10.2478/conop-2014-0001

D. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), No. 1, 85–111. https://doi.org/10.2307/2374458

D. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), No. 2, 345–368. https://doi.org/10.1016/0022-1236(87)90072-3

N. Nikolski, Operators, Functions, and Systems: an Easy Reading, I, II, AMS Mathematical Surveys and Monographs, 92, 93, Amer. Math. Soc., Providence, RI, 2002.

R. Schmied, personal communication, 27/02/2005; see also http://mathworld. wolfram.com/LegendrePolynomial.html.

B. Simon, Trace Ideals and Their Applications, 2nd ed. AMS Mathematical Surveys and Monographs, 120, Amer. Math. Soc., Providence, RI, 2005.

K. Stroethoff, Compact Toeplitz operators on Bergman spaces, Math. Proc. Cambridge Philos. Soc. 124 (1998), No. 1, 151–160. https://doi.org/10.1017/S0305004197002375

D. Suárez, The eigenvalues of limits of radial Toeplitz operators, Bull. Lond. Math. Soc. 40 (2008), No. 4, 631–641. https://doi.org/10.1112/blms/bdn042

N. Zorboska, The Berezin transform and radial operators, Proc. Amer. Math. Soc. 131 (2003), No. 3, 793–800 (electronic). https://doi.org/10.1090/S0002-9939-02-06691-1

K. Zhu, Operator Theory in Function Spaces, 2nd edition. AMS Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/surv/138

K. Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), No. 2, 329–357.

Downloads

Як цитувати

(1)
Bendaoud, Z.; Kupin, S.; Toumache, K.; Touré, B.; Zarouf, R. Toeplitz Operators with Radial Symbols on Bergman Space and Schatten-von Neumann Classes. Журн. мат. фіз. анал. геом. 2020, 16, 3-26.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.