On the Correlation Functions of the Characteristic Polynomials of Real Random Matrices with Independent Entries
DOI:
https://doi.org/10.15407/mag16.02.091Анотація
У статті розглянуто кореляційні функції характеристичних поліномів дійсних випадкових матриць з незалежними елементами та встановлено асимптотичну поведінку цих кореляційних функцій у формі деякого інтеграла за інваріантною мірою по множині унітарних самодуальних матриць. Цей інтеграл обчислено для кореляційної функції другого порядку. З одержаної асимптотики випливає, що кореляційні функції ведуть себе таким же чином, як і у випадку дійсного ансамблю Жинібра з точністю до множника, що залежить лише від четвертого моменту спільного розподілу ймовірностей матричних елементів.Mathematics Subject Classification: 60B20, 15B52
Ключові слова:
теорія випадкових матриць, ансамбль Жинібра, кореляційні функції характеристичних поліномів, моменти характеристичних поліномів, суперсиметріяПосилання
I. Afanasiev, On the correlation functions of the characteristic polynomials of the sparse Hermitian random matrices, J. Stat. Phys. 163(2) (2016), 324–356. https://doi.org/10.1007/s10955-016-1486-z
I. Afanasiev, On the correlation functions of the characteristic polynomials of nonHermitian random matrices with independent entries, J. Stat. Phys. 176(6) (2019), 1561–1582. https://doi.org/10.1007/s10955-019-02353-w
G. Akemann and E. Kanzieper, Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem, J. Stat. Phys. 129(5-6) (2007), 1159–1231. https://doi.org/10.1007/s10955-007-9381-2
F.A. Berezin, Introduction to Superanalysis, Number 9 in Math. Phys. Appl. Math. D. Reidel Publishing Co., Dordrecht, 1987. Edited and with a foreword by A.A. Kirillov. With an appendix by V.I. Ogievetsky. Translated from the Russian by J. Niederle and R. Kotecký. Translation edited by D. Leı̆tes. https://doi.org/10.1007/978-94-017-1963-6
C. Bordenave and D. Chafaı̈, Around the circular law, Probab. Surv. 9 (2012), 1–89. https://doi.org/10.1214/11-PS183
A. Borodin and C. D. Sinclair, The Ginibre ensemble of real random matrices and its scaling limits, Comm. Math. Phys. 291 (2009), 177–224. https://doi.org/10.1007/s00220-009-0874-5
A. Borodin and E. Strahov, Averages of characteristic polynomials in random matrix theory, Comm. Pure Appl. Math. 59(2) (2006), 161–253. https://doi.org/10.1002/cpa.20092
E. Brézin and S. Hikami, Characteristic polynomials of random matrices, Comm. Math. Phys. 214 (2000), 111–135. https://doi.org/10.1007/s002200000256
E. Brézin and S. Hikami. Characteristic polynomials of real symmetric random matrices, Comm. Math. Phys. 223 (2001), 363–382. https://doi.org/10.1007/s002200100547
G. Cipolloni, L. Erdős, and D. Schröder, Edge universality for non-Hermitian random matrices, preprint, https://arxiv.org/abs/1908.00969v2.
G. Cipolloni, L. Erdős, and D. Schröder, Optimal lower bound on the least singular value of the shifted Ginibre ensemble, preprint, https://arxiv.org/abs/1908. 01653v3.
G. Cipolloni, L. Erdős, and D. Schröder, Fluctuation around the circular law for random matrices with real entries, preprint, https://arxiv.org/abs/2002.02438v1.
M. Disertori, M. Lohmann, and S. Sodin, The density of states of 1D random band matrices via a supersymmetric transfer operator, preprint, https://arxiv.org/ abs/1810.13150v1.
M. Disertori, T. Spencer, and M. R. Zirnbauer, Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model, Comm. Math. Phys. 300(2) (2010), 435–486. https://doi.org/10.1007/s00220-010-1117-5
K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511573057
K. B. Efetov, Supersymmetry and theory of disordered metals, Adv. in Physics 32(1) (1983), 53–127. https://doi.org/10.1080/00018738300101531
Y. V. Fyodorov and A. D. Mirlin, Localization in ensemble of sparse random matrices, Phys. Rev. Lett. 67 (1991), 2049–2052. https://doi.org/10.1103/PhysRevLett.67.2405
Y. V. Fyodorov and E. Strahov, An exact formula for general spectral correlation function of random Hermitian matrices. Random matrix theory, J. Phys. A 36(12) (2003), 3203–3214. https://doi.org/10.1088/0305-4470/36/12/320
J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965), 440–449. https://doi.org/10.1063/1.1704292
V. L. Girko, The circular law, Teor. Veroyatn. Primen. 29(4) (1984), 669–679. https://doi.org/10.1137/1129095
V. L. Girko, The circular law: ten years later, Random Oper. Stoch. Equ. 2(3) (1994), 235–276. https://doi.org/10.1515/rose.1994.2.3.235
V. L. Girko, The strong circular law. Twenty years later. I, Random Oper. Stoch. Equ. 12(1) (2004), 49–104. https://doi.org/10.1515/156939704323067834
V. L. Girko, The strong circular law. Twenty years later. II, Random Oper. Stoch. Equ. 12(3) (2004), 255–312. https://doi.org/10.1515/1569397042222477
V. L. Girko, The circular law. Twenty years later. III, Random Oper. Stoch. Equ. 13(1) (2005), 53–109. https://doi.org/10.1515/1569397053300946
T. Guhr, Supersymmetry, The Oxford Handbook of Random Matrix Theory (eds. G. Akemann, J. Baik, and P.D. Francesco), Oxford university press, 2015, 135–154.
P. Kopel, Linear statistics of non-Hermitian matrices matching the real or complex Ginibre ensemble to four moments, preprint, https://arxiv.org/abs/1510. 02987v1
P. Littelmann, H.-J. Sommers, and M.R. Zirnbauer, Superbosonization of invariant random matrix ensembles, Comm. Math. Phys., 283 (2008), 343–395. https://doi.org/10.1007/s00220-008-0535-0
M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York–London, 1967.
A.D. Mirlin and Y.V. Fyodorov, Universality of level correlation function of sparse random matrices, J. Phys. A 24 (1991), 2273–2286. https://doi.org/10.1088/0305-4470/24/10/016
S. O’Rourke and D. Renfrew, Central limit theorem for linear eigenvalue statistics of elliptic random matrices, J. Theoret. Probab. 29 (2016), 1121–1191. https://doi.org/10.1007/s10959-015-0609-9
L. Pastur and M. Shcherbina, Szegö-Type theorems for one-dimensional Schrödinger operator with random potential (smooth case) Zh. Mat. Fiz. Anal. Geom. 14 (2018), 362–388. https://doi.org/10.15407/mag14.03.362
C. Recher, M. Kieburg, T. Guhr, and M.R. Zirnbauer, Supersymmetry approach to Wishart correlation matrices: Exact results, J. Stat. Phys. 148(6) (2012), 981–998. https://doi.org/10.1007/s10955-012-0567-x
M. Shcherbina and T. Shcherbina, Transfer matrix approach to 1d random band matrices: density of states, J. Stat. Phys. 164(6) (2016), 1233–1260. https://doi.org/10.1007/s10955-016-1593-x
M. Shcherbina and T. Shcherbina, Characteristic polynomials for 1D random band matrices from the localization side, Comm. Math. Phys. 351(3) (2017), 1009–1044. https://doi.org/10.1007/s00220-017-2849-2
M. Shcherbina and T. Shcherbina, Universality for 1d random band matrices: sigmamodel approximation, J. Stat. Phys. 172(2) (2018), 627–664. https://doi.org/10.1007/s10955-018-1969-1
T. Shcherbina, On the correlation function of the characteristic polynomials of the Hermitian Wigner ensemble, Comm. Math. Phys. 308 (2011), 1–21. https://doi.org/10.1007/s00220-011-1316-8
T. Shcherbina, On the correlation functions of the characteristic polynomials of the Hermitian sample covariance matrices, Probab. Theory Related Fields 156 (2013), 449–482. https://doi.org/10.1007/s00440-012-0433-4
E. Strahov and Y.V. Fyodorov, Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach, Comm. Math. Phys. 241(2-3) (2003), 343–382. https://doi.org/10.1007/s00220-003-0938-x
T. Tao and V. Vu, Random matrices: universality of ESDs and the circular law, Ann. Probab. 38(5) (2010), 2023–2065. With an appendix by Manjunath Krishnapur. https://doi.org/10.1214/10-AOP534
T. Tao and V. Vu, Random matrices: universality of local spectral statistics of non-Hermitian matrices, Ann. Probab. 43(2) (2015), 782–874. https://doi.org/10.1214/13-AOP876
E.B. Vinberg, A Course in Algebra, American Mathematical Society, Providence, RI, 2003. https://doi.org/10.1090/gsm/056