Automorphisms of Cellular Divisions of 2-Sphere Induced by Functions with Isolated Critical Points

Автор(и)

  • Anna Kravchenko Taras Shevchenko National University of Kyiv, Ukraine
  • Sergiy Maksymenko Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15407/mag16.02.138

Анотація

Нехай $f:S^2\to \mathbb{R}$ -- функція Морса на $2$-сфері і $K$ -- компонента зв'язності деякої множини рівня функції $f$, що містить хоча б одну сідлову критичну точку. Тоді $K$ - це $1$-вимірний CW-комплекс, клітково вкладений в $S^2$, так що доповнення $S^2\setminus K$ є об'єднанням відкритих $2$-дисків $D_1,\ldots, D_k$. Нехай $\mathcal{S}_{K}(f)$ група дифеоморфізмів $S^2$, які ізотопні до тотожного відображення і залишають інваріантними множину $K$ і кожну множину рівня $f^{-1}(c)$, $c\in\mathbb{R}$. Тоді кожен $h\in \mathcal{S}_{K}(f)$ індукує певну перестановку $\sigma_{h}$ вказаних вище дисків. Позначимо через $G = \{ \sigma_h \mid h \in \mathcal{S}_{K}(f)\}$ групу всіх таких перестановок. Ми доведемо, що $G$ ізоморфна скінченній підгрупі в $SO(3)$.

Mathematics Subject Classification: 20E22, 57M60, 22F50

Ключові слова:

поверхня, функція Морса, дифеоморфізми

Посилання

G.M. Adelson-Welsky and A.S. Kronrode, Sur les lignes de niveau des fonctions continues possédant des dérivées partielles, C. R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1945), 235–237 (French).

E.B. Batista, J.C.F. Costa, and I.S. Meza-Sarmiento, Topological classification of circle-valued simple Morse–Bott functions, J. Singul. 17 (2018), 388–402. https://doi.org/10.5427/jsing.2018.17q

A.V. Bolsinov and A.T. Fomenko, Introduction to the Topology of Integrable Hamiltonian Systems, Nauka, Moscow, 1997 (Russian).

A.V. Bolsinov and A.T. Fomenko, Some actual unsolved problems in topology of integrable Hamiltonian systems, Topological Classification in Theory of Hamiltonian Systems, Factorial, Moscow, 1999, 5–23.

Yu. Brailov, Algebraic properties of symmetries of atoms, Topological Classification in Theory of Hamiltonian Systems, Factorial, Moscow, 1999, 24–40.

Yu.A. Brailov and E.A. Kudryavtseva, Stable topological nonconjugacy of Hamiltonian systems on two-dimensional surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 72 (1999), No. 2, 20–27.

A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. (2) 40 (1994), No. 3-4, 193–204.

R. Cori and A. Machı̀. Construction of maps with prescribed automorphism group, Theoret. Comput. Sci. 21 (1982), No. 1, 91–98. https://doi.org/10.1016/0304-3975(82)90090-1

E.N. Dancer. Degenerate critical points, homotopy indices and Morse inequalities II, J. Reine Angew. Math. 382 (1987), 145–164. https://doi.org/10.1515/crll.1987.382.145

A.T. Fomenko. A Morse theory for integrable Hamiltonian systems, Dokl. Akad. Nauk SSSR 287 (1986), No. 5, 1071–1075 (Russian).

A.T. Fomenko, Symplectic topology of completely integrable Hamiltonian systems, Uspekhi Mat. Nauk 44 (1989), No. 1(265), 145–173, 248 (Russian). https://doi.org/10.1070/RM1989v044n01ABEH002006

J. Franks, Nonsingular Smale flows on S 3 , Topology, 24 (1985), No. 3, 265–282. https://doi.org/10.1016/0040-9383(85)90002-3

R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1939), 239–250.

C. Jordan, Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869), 185–190. https://doi.org/10.1515/crll.1869.70.185

A.A. Kadubovsky and A.V. Klimchuk. Classification of O-topologically nonequivalent functions with color chord diagrams, Methods Funct. Anal. Topology, 10 (2004), No. 3, 23–32.

F.C. Klein, Lectures on the ikosahedron and the solution of equations of the fifth degree, Cornel University Library, 322 (1888), 21–23.

A. Kravchenko and S. Maksymenko, Automorphisms of Kronrod-Reeb graphs of Morse functions on compact surfaces, European Journal of Mathematics, https: //arxiv.org/abs/1808.08746.

A.S. Kronrod, On functions of two variables, Uspehi Matem. Nauk (N.S.) 5 (1950), No. 1(35), 24–134 (Russian).

E.A. Kudryavtseva, Realization of smooth functions on surfaces as height functions, Mat. Sb., 190 (1999), No. 3, 29–88 (Russian). https://doi.org/10.1070/SM1999v190n03ABEH000392

E.A. Kudryavtseva, Special framed Morse functions on surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2012), No. 4, 14–20. https://doi.org/10.3103/S0027132212040031

E.A. Kudryavtseva. The topology of spaces of Morse functions on surfaces, Math. Notes 92 (2012), No. 1-2, 219–236. https://doi.org/10.1134/S0001434612070243

E.A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces, Mat. Sb. 204 (2013), No. 1, 79–118 (Russian). https://doi.org/10.1070/SM2013v204n01ABEH004292

E.A. Kudryavtseva and A.T. Fomenko. Symmetry groups of nice Morse functions on surfaces, Dokl. Akad. Nauk 446 (2012), No. 6, 615–617 (Russian).

E.A. Kudryavtseva and A.T. Fomenko. Each finite group is a symmetry group of some map (an “Atom”-bifurcation), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 68 (2013), No. 3, 148–155. https://doi.org/10.3103/S0027132213030030

E.A. Kudryavtseva, I.M. Nikonov, and A.T. Fomenko, Maximally symmetric cellular partitions of surfaces and their coverings, Mat. Sb. 199 (2008), No. 9, 3–96 (Russian). https://doi.org/10.1070/SM2008v199n09ABEH003962

E.V. Kulinich, On topologically equivalent Morse functions on surfaces, Methods Funct. Anal. Topology 4 (1998), No. 1, 59–64.

S. Maksymenko and B. Feshchenko, Orbits of smooth functions on 2-torus and their homotopy types, Matematychni Studii 44 (20151), No. 1, 67–84. https://doi.org/10.15330/ms.44.1.67-83

S. Maksymenko and B. Feshchenko, Smooth functions on 2-torus whose kronrod-reeb graph contains a cycle, Methods Funct. Anal. Topology 21 (2015), No. 1, 22–40.

S. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), No. 3, 241–285. https://doi.org/10.1007/s10455-005-9012-6

S. Maksymenko, Functions on surfaces and incompressible subsurfaces, Methods Funct. Anal. Topology 16 (2010), No. 2, 167–182.

S. Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms, Topology Appl. (to appear), https://arxiv.org/abs/1311.3347.

S. Maksymenko and B. Feshchenko, Homotopy properties of spaces of smooth functions on 2-torus, Ukraı̈n. Mat. Zh. 66 (2014), No. 9, 1205–1212 (Russian).

L.P. Michalak, Realization of a graph as the Reeb graph of a Morse function on a manifold, Topol. Methods Nonlinear Anal. 52 (2018), 749–762. https://doi.org/10.12775/TMNA.2018.029

E.C. Nummela, Cayley’s theorem for topological groups, Amer. Math. Monthly 87 (1980), No. 3, 202–203. https://doi.org/10.1080/00029890.1980.11994993

E.A. Polulyakh, Kronrod–Reeb graphs of functions on noncompact two-dimensional surfaces II, Ukrainian Math. J. 67 (2016), No. 10, 1572–1583. https://doi.org/10.1007/s11253-016-1173-x

A.O. Prishlyak, Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology Appl. 119 (2002), No. 3, 257–267. https://doi.org/10.1016/S0166-8641(01)00077-3

G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., No. 1183, Hermann & Cie., Paris, 1952. Publ. Inst. Math. Univ. Strasbourg 11, 5–89, 155–156 (French).

V.V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukraı̈n. Mat. Zh. 55 (2003), No. 5, 687–700 (Russian). https://doi.org/10.1023/B:UKMA.0000010259.21815.d7

J. Širáň and M. Škoviera, Orientable and nonorientable maps with given automorphism groups, Australas. J. Combin. 7 (1993), 47–53.

Downloads

Як цитувати

(1)
Kravchenko, A.; Maksymenko, S. Automorphisms of Cellular Divisions of 2-Sphere Induced by Functions with Isolated Critical Points. Журн. мат. фіз. анал. геом. 2020, 16, 138-160.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.