Dissipative Extensions of Linear Relations Generated by Integral Equations with Operator Measures
DOI:
https://doi.org/10.15407/mag16.04.381Анотація
У статті визначено мінімальне відношення L0, яке породжене інтегральним рівнянням з операторними мірами, i надано опис спряженого відношення L0*. Для цього мінімального відношення побудовано простір граничних значень (гранична трійка), що задовольняє абстрактну "формулу Грiна", і одержано опис максимального дисипативного (акумулятивного) відношення, а також самоспряжених розширень мінімального відношення.Mathematics Subject Classification: 47A10, 46G12, 45N05
Ключові слова:
гільбертів простір, лінійне відношення, інтегральне рівняння, дисипативне розширення, самоспряжене розширення, граничне значення, операторна міраПосилання
A.G. Baskakov, Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations, Uspekhi Mat. Nauk 68 (2013), No. 1, 77–128; Engl. transl.: Russian Math. Surveys 68 (2013), No. 1, 69–116. https://doi.org/10.1070/RM2013v068n01ABEH004822
Yu.M. Berezanski, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965; Engl. transl.: Amer. Math. Soc., Providence, RI, 1968.
J. Behrndt, S. Hassi, H. Snoo, and R. Wietsma, Square-integrable solutions and Weil functions for singular canonical systems, Math. Nachr. 284 (2011), No. 11–12, 1334–1384. https://doi.org/10.1002/mana.201000017
V.M. Bruk, On a class of boundary value problems with spectral parameter in the boundary condition, Mat. Sbornik 100 (1976), No. 2, 210–216; Engl. transl.: Math. USSR-Sbornik 29 (1976), No. 2, 186–192. https://doi.org/10.1070/SM1976v029n02ABEH003662
V.M. Bruk, Extensions of symmetric relations, Mat. Zametki 22 (1977), No. 6, 825–834; Engl. transl.: Mathematical Notes 22 (1977), No. 6, 953–958. https://doi.org/10.1007/BF01099564
V.M. Bruk, On a number of linearly independent square-integrable solutions of systems of differential equations, Functional Analysis 5 (1975), Uljanovsk, 25–33.
V.M. Bruk, Linear relations in a space of vector functions, Mat. Zametki 24 (1978), No. 4, 499–511; Engl. transl.: Mathematical Notes, 24 (1978), No. 4, 767–773. https://doi.org/10.1007/BF01099164
V.M. Bruk, Boundary value problems for integral equations with operator measures, Probl. Anal. Issues Anal. 6(24) (2017), No. 1, 19–40. https://doi.org/10.15393/j3.art.2017.3810
V.M. Bruk, On self-adjoint extensions of operators generated by integral equations, Taurida Journal of Computer Science Theory and Mathematics (2017), No. 1(34), 17–31.
V.M. Bruk, On the characteristic operator of an integral equation with a Nevanlinna measure in the infinite-dimensional case, Zh. Mat. Fiz. Anal. Geom. 10 (2014), No. 2, 163–188. https://doi.org/10.15407/mag10.02.163
V.M. Bruk,r Generalized Resolvents of operators generated by integral equations, Probl. Anal. Issues Anal, 7(25) (2018), No. 2, 20–38. https://doi.org/10.15393/j3.art.2018.4630
V.M. Bruk, On self-adjoint extensions of relations generated by integral equations, Taurida Journal of Computer Science Theory and Mathematics (2019), No. 1(42), 43–61.
V.I. Gorbachuk and M.L. Gorbachuk, Boundary Value Problems for DifferentialOperator Equations, Naukova Dumka, Kiev, 1984; Engl. transl.: Kluver Acad. Publ., Dordrecht-Boston-London, 1991. https://doi.org/10.1007/978-94-011-3714-0
M.L. Gorbachuk, A.N. Kochubei, and M.A. Rybak, Dissipative extensions of differential operators in a space of vector-functions, Dokl. AN USSR 205 (1971), No. 5, 1029–1032; Engl. transl.: Soviet Math. Dokl. 13 (1972), No. 1, 1063–1067.
V. Khrabustovskyi, Analogs of generalized resolvents for relations generated by a pair of differential operator expressions one of which depends on spectral parameter in nonlinear manner, Zh. Mat. Fiz. Anal. Geom. 9 (2013), No. 4, 496–535.
A.N. Kochubei, Extensions of symmetric operators and symmetric binary relations, Mat. Zametki 17 (1975), No. 1, 41–48; Engl. transl.: Mathematical Notes, 17 (1975), No. 1, 25–28. https://doi.org/10.1007/BF01093837
M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, Mat. Sbornik 20 (1947), No. 3, 431–495; 21 (1947), No. 3, 365–404.
M.A. Naimark, Linear Differential Operators, Nauka, Moscow, 1969; Engl. transl.: George G. Harrar and Company, LTD, London-Toronto-Wellington-Sidney, 1969.
B.C. Orcutt, Canonical Differential Equations, Ph. D. Thesis, University of Virginia, 1969.
F.S. Rofe-Beketov, Self-adjoint extensions of differential operators in a space of vector functions, Dokl. AN USSR 184 (1969), No. 5, 1034–1037; Engl. transl.: Soviet Math. Dokl. 10 (1969), No. 1, 188–192. https://doi.org/10.1080/00385417.1969.10770402
F.S. Rofe-Beketov and A.M Kholkin, Spectral Analysis of Differential Operators, World Scientific Monograph Series in Mathematics, 7, Singapure, 2005. https://doi.org/10.1142/5788