Ricci Solitons and Certain Related Metrics on Almost Co-Kaehler Manifolds

Автор(и)

  • Devaraja Mallesha Naik Department of Mathematics, CHRIST (Deemed to be University), Bengaluru-560029, Karnataka, India
  • V. Venkatesha Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka 577 451, India
  • H. Aruna Kumara Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka 577 451, India

DOI:

https://doi.org/10.15407/mag16.04.402

Анотація

У статті вивчаються солітони Річчі та узагальнена $m$-квазі-ейнштейнова метрика на майже ко-келеровому многовиду $M$, що задовольняє нуль-умову. Спочатку ми розглядаємо не ко-келерову $(\kappa, \mu)$-майже ко-келерову метрику як солітон Річчі і доводимо, що солітон розширюється з $\lambda=-2n\kappa$, а векторне поле солітона $X$ залишає структурні тензори $\eta,\xi$ and $\varphi$ інваріантними. Даний результат узагальнює Теорему 5.1 з [32]. Побудовано приклад існування солітона Річчі на $M$. Наприкінці ми доводимо що, якщо $M$ це узагальнений $(\kappa, \mu)$-майже ко-келеровий многовид розмірності більшої за 3, такий що $h\neq 0$, то тоді метрика $M$ не може бути узагальненою $m$-квазі-ейнштейнновою метрикою, і це включає результат нещодавно отриманий Вангом [37, Theorem 4.1] як окремий випадок.

Mathematics Subject Classification: 53C25, 53C15, 53D15

Ключові слова:

майже ко-келеровий многовид, солітон Річчі, узагальнена m-квазі-ейнштейнова метрика, розподіл (κ, μ)-обнулення

Посилання

A. Barros and E.Jr. Ribeiro, Characterizations and integral formulae for generalized m-quasi-Einstein metrics, Bull. Brazilian Math. Soc. 45 (2014), 324–341. https://doi.org/10.1007/s00574-014-0051-0

C.L. Bejan and M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Global Anal. Geom. 46 (2014), 117–127. https://doi.org/10.1007/s10455-014-9414-4

D.E. Blair, The theory of quasi-Sasakian structures, J. Differ. Geom. 1 (1967), 331– 345. https://doi.org/10.4310/jdg/1214428097

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, 2010. https://doi.org/10.1007/978-0-8176-4959-3

C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f -Kenmotsu manifolds, Bull. Malays. Mat. Sci. Soc. 33 (2010), 361–368.

B. Cappelletti-Montano, A.D. Nicola, and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), 1343002. https://doi.org/10.1142/S0129055X13430022

J. Case, Y. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93–100. https://doi.org/10.1016/j.difgeo.2010.11.003

G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), 751–756. https://doi.org/10.1007/s00209-011-0888-5

G. Catino and L. Mazzieri, Gradient Einstein-solitons, preprint, https://arxiv. org/abs/1201.6620.

X. Chen, Ricci solitons in almost f -cosymplectic manifolds, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), 305–319. https://doi.org/10.36045/bbms/1546570911

J. T. Cho, Almost contact 3-manifolds and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1220022. https://doi.org/10.1142/S0219887812200228

M. Crasmareanu, Parallel tensors and Ricci solitons in N (κ)-quasi Einstein manifolds, Indian J. Pure Appl. Math. 43 (2012), 359–369. https://doi.org/10.1007/s13226-012-0022-3

P. Dacko, On almost cosymplectic manifolds with the structure vector field ξbelonging to the κ-nullity distribution, Balkan J. Geom. Appl. 5 (2000), 47–60.

K.L. Duggal and R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Kluwer, Dordrecht, 1999. https://doi.org/10.1007/978-1-4615-5315-1

H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), 272–284.

A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals 44 (2011), 647–650. https://doi.org/10.1016/j.chaos.2011.05.015

A. Ghosh, An η-Einstein Kenmotsu metric as a Ricci soliton, Publ. Math. Debrecen 82 (2013), 591–598. https://doi.org/10.5486/PMD.2013.5344

A. Ghosh, (m, ρ)-quasi Einstein metrics in the frame work of K-contact manifold, Math. Phys. Anal. Geom. 17 (2014), 369–376. https://doi.org/10.1007/s11040-014-9161-6

A. Ghosh, Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds, Ann. Polon. Math. 115 (2015), 33–41. https://doi.org/10.4064/ap115-1-3

A. Ghosh and R. Sharma Some results on contact metric manifolds, Ann. Global Anal. Geom. 15 (1997), 497–507. https://doi.org/10.1023/A:1006583608150

S.I. Goldberg and K. Yano, Integrability of almost cosymplectic structures Pacific J. Math. 31 (1969), 373–382. https://doi.org/10.2140/pjm.1969.31.373

R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419

C. He, P. Petersen and W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom. 20 (2012), 271–311. https://doi.org/10.4310/CAG.2012.v20.n2.a3

G. Huang and Y. Wei, The classification of (m, ρ)-quasi-Einstein manifolds, Ann. Global Anal. Geom. 44 (2013), 269–282. https://doi.org/10.1007/s10455-013-9366-0

H. Li, Topology of co-symplectic/co-Kähler manifolds Asian J. Math. 12 (2008), 527–544. https://doi.org/10.4310/AJM.2008.v12.n4.a7

D.M. Naik and V. Venkatesha, η-Ricci solitons and almost η-Ricci solitons on paraSasakian manifolds, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1950134. https://doi.org/10.1142/S0219887819501342

D.M. Naik, V. Venkatesha, and D. G. Prakasha, Certain results on Kenmotsu pseudo-metric manifolds, Miskolc Math. Notes 20 (2019), 1083–1099. https://doi.org/10.18514/MMN.2019.2905

Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239–250. https://doi.org/10.2996/kmj/1138036371

H. Oztürk, N. Aktan and C. Murathan, Almost α-cosymplectic (κ, µ, ν)-spaces, preprint, https://arxiv.org/abs/1007.0527v1.

G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, https://arxiv.org/abs/math/0211159v1.

R. Sharma, Certain results on K-contact and (κ, µ)-contact manifolds, J. Geom. 89 (2008), 138–147. https://doi.org/10.1007/s00022-008-2004-5

Y. J. Suh and U. C. De, Yamabe solitons and Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. (2019) https://doi.org/10.4153/S0008439518000693

S. Tanno, The automorphism group of almost contact Riemannian manifolds, Tohoku Math. J. 21 (1969), 21–38. https://doi.org/10.2748/tmj/1178243031

M. Turan, U. C. De and A. Yildiz, Ricci solitons and gradient Ricci solitons in three dimensional trans-Sasakian manifolds, Filomat 26 (2012), 363–370. https://doi.org/10.2298/FIL1202363T

V. Venkatesha, D.M. Naik and H. A. Kumara, ∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds, Math. Slovaca, 69 (2019), 1–12. https://doi.org/10.1515/ms-2017-0198

V. Venkatesha, H. A. Kumara and D. M. Naik, Almost ∗-Ricci Soliton on ParaKenmotsu Manifolds, Arab. J. Math. (2019). https://doi.org/10.1007/s40065-019-00269-7

Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds, Mediterr. J. Math. 13 (2016), 2679–2690. https://doi.org/10.1007/s00009-015-0523-5

Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca, 67 (2017), 979–984. https://doi.org/10.1515/ms-2017-0026

Y. Wang, Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62(2019), 912–922. https://doi.org/10.4153/CMB-2018-021-0

Y. Wang and X. Liu, Ricci solitons on three dimensional η-Einstein almost Kenmotsu manifolds, Taiwanese. J. Math. 19 (2015), 91–100. https://doi.org/10.11650/tjm.19.2015.3493

K. Yano, Integral Formulas in Riemannian Ggeometry, New York, Marcel Dekker, 1970.

Downloads

Як цитувати

(1)
Naik, D. M.; Venkatesha, V.; Kumara, H. A. Ricci Solitons and Certain Related Metrics on Almost Co-Kaehler Manifolds. Журн. мат. фіз. анал. геом. 2020, 16, 402-417.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.