Defocusing Nonlocal Nonlinear Schrödinger Equation with Step-like Boundary Conditions: Long-time Behavior for Shifted Initial Data
DOI:
https://doi.org/10.15407/mag16.04.418Анотація
Стаття присвячена асимптотиці за великим часом початкової задачі для інтегровного дефокусуючого нелокального нелінійного рівняння Шредінгера $ iq_{t}(x,t)+q_{xx}(x,t)-2 q^{2}(x,t)\bar{q}(-x,t)=0 $ з початковими даними типу сходинки: $q(x,0)\to 0$ при $x\to -\infty$ та $q(x,0)\to A$ при $x\to +\infty$. Через те, що це рівняння не є трансляційно інваріантним, розв'язок цієї задачі чутливий до зміщень початкових даних. Ми розглядаємо сім'ю задач, параметризованих параметром $R>0$, з початковим даними, які можуть розглядатися як збурення "зміщеної сходинки" $q_{R,A}(x)$: $q_{R,A}(x)=0$ для $x<R$ та $q_{R,A}(x)=A$ для $x>R$, де $A>0$ та $R>0$ є довільними константами. Ми показуємо, що асимптотика розв'язку задачі за великим часом якісно різна у секторах $(x,t)$ площини, кількість яких залежить від значень $A$ та $R$: для фіксованого $A$, чим більше $R$, тим більша кількість секторів.
Mathematics Subject Classification: 35B40, 35Q15, 35B30
Ключові слова:
нелокальне нелінійне рівняння Шредінгера, задача Рімана-Гільберта, асимптотика за великим часом, нелінійний метод перевалуПосилання
M.J. Ablowitz, B.-F. Feng, X.-D. Luo, and Z.H. Musslimani, General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions, Nonlinearity 31 5385 (2018). https://doi.org/10.1088/1361-6544/aae031
M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems, Stud. Appl. Math. 53 (1974), 249–315. https://doi.org/10.1002/sapm1974534249
M.J. Ablowitz, X.-D. Luo, and J. Cole, Solitons, the Korteweg–de Vries equation with step boundary values, and pseudo-embedded eigenvalues, J. Math. Phys. 59 091406 (2018). https://doi.org/10.1063/1.5026332
M.J. Ablowitz and Z.H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett. 110 064105 (2013). https://doi.org/10.1103/PhysRevLett.110.064105
M.J. Ablowitz and Z.H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity 29 (2016), 915–946. https://doi.org/10.1088/0951-7715/29/3/915
K. Andreiev and I. Egorova, On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves, Zh. Mat. Fiz. Anal. Geom. 13 (2017), 325–343. https://doi.org/10.15407/mag13.04.325
K. Andreiev, I. Egorova, T.L. Lange, and G. Teschl, Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent, J. Differential Equations, 261 (2016) 5371–5410. https://doi.org/10.1016/j.jde.2016.08.009
C.M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having P-T symmetry, Phys. Rev. Lett. 80 (1998), 5243. https://doi.org/10.1103/PhysRevLett.80.5243
G. Biondini, Riemann problems and dispersive shocks in self-focusing media, Phys. Rev. E, 98 (2018), 052220-7. https://doi.org/10.1103/PhysRevE.98.042211
G. Biondini, E. Fagerstrom, and B. Prinari, Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions, Phys. D: Nonlinear Phenomena, 333 (2016), 117–136. https://doi.org/10.1016/j.physd.2016.04.003
G. Biondini and B. Prinari, On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation, Stud. Appl. Math. 132 2 (2014), 138–159. https://doi.org/10.1111/sapm.12024
Yu. Bludov, V. Konotop, and B. Malomed, Stable dark solitons in PT-symmetric dual-core waveguides, Phys. Rev. A 87 013816 (2013). https://doi.org/10.1103/PhysRevA.87.013816
A. Boutet de Monvel, V.P. Kotlyarov, and D. Shepelsky, Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data, Int. Math. Res. Not. 7 (2011), 1613– 1653 https://doi.org/10.1093/imrn/rnq129
D.C. Brody, PT-symmetry, indefinite metric, and nonlinear quantum mechanics, J. Phys. A: Math. Theor. 50 485202 (2017). https://doi.org/10.1088/1751-8121/aa91e2
R. Buckingham and S. Venakides, Long-time asymptotics of the nonlinear Schrödinger equation shock problem, Comm. Pure Appl. Math. 60 (2007), 1349–1414. https://doi.org/10.1002/cpa.20179
K. Chen and D.J. Zhang, Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction, Appl. Math. Lett., 75 (2018), 82–88. https://doi.org/10.1016/j.aml.2017.05.017
P.A. Deift, A.R. Its, and X. Zhou, Long-time asymptotics for integrable nonlinear wave equations. In Important developments in Soliton Theory 1980–1990 (Eds. A.S. Fokas and V.E. Zakharov), Springer, New York, 1993, 181–204. https://doi.org/10.1007/978-3-642-58045-1_10
P. Deift, S. Kamvissis, T. Kriecherbauer, and X. Zhou, The Toda rarefaction problem, Comm. Pure Appl. Math., XLIX (1996), 35–83. https://doi.org/10.1002/(SICI)1097-0312(199601)49:1<35::AID-CPA2
P.A. Deift, S. Venakides, and X. Zhou, The collisionless shock region for the longtime behavior of solutions of the KdV equation, Comm. Pure Appl. Math. 47 (1994), No. 2, 199–206. https://doi.org/10.1002/cpa.3160470204
P.A. Deift, S. Venakides, and X. Zhou, New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems, Int. Math. Res. Not. 6 (1997), 286–299. https://doi.org/10.1155/S1073792897000214
P.A. Deift and X. Zhou, A steepest descend method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. 137 (1993), No. 2, 295– 368. https://doi.org/10.2307/2946540
I. Egorova, J. Michor and G. Teschl, Long-time asymptotics for the Toda shock problem: non-overlapping spectra, Zh. Mat. Fiz. Anal. Geom. 14 (2018), 406–451. https://doi.org/10.15407/mag14.04.406
G.A. El and M.A. Hoefer, Dispersive shock waves and modulation theory, Phys. D: Nonlinear Phenomena 333 (2016), 11–65. https://doi.org/10.1016/j.physd.2016.04.006
L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-69969-9
A.S. Fokas, A.R. Its, A.A. Kapaev, and V. Yu. Novokshenov, Painleve Transcendents. The Riemann–Hilbert Approach, Amer. Math. Soc, Providence, RI, 2006. https://doi.org/10.1090/surv/128
T. Gadzhimuradov and A. Agalarov, Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation, Phys. Rev. A 93 (2016), 062124. https://doi.org/10.1103/PhysRevA.93.062124
V.S. Gerdjikov and A. Saxena, Complete integrability of nonlocal nonlinear Schrödinger equation, J. Math. Phys. 58 (2017), 013502. https://doi.org/10.1063/1.4974018
A.V. Gurevich and L.P. Pitaevskii, Nonstationary structure of a collisionless shock wave, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 65 (1973), 590–604.
M. Gürses and A. Pekcan, Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys. 59 (2018), 051501. https://doi.org/10.1063/1.4997835
R. Jenkins, Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation, Nonlinearity 28 (2015), 2131–2180. https://doi.org/10.1088/0951-7715/28/7/2131
E.Ya. Hruslov, Asymptotics of the solution of the cauchy problem for the Kortewegde Vries equation with initial data of step type, Math. USSR-Sb. 28 (1976), 229–248. https://doi.org/10.1070/SM1976v028n02ABEH001649
A.R. Its, Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Doklady Akad. Nauk SSSR 261 (1981), No. 1, 14–18.
V.V. Konotop, J. Yang, and D.A. Zezyulin, Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88 (2016), 035002. https://doi.org/10.1103/RevModPhys.88.035002
V.P. Kotlyarov and E.Ya. Khruslov, Solitons of the nonlinear Schrödinger equation, which are generated by the continuous spectrum, Teoreticheskaya i Matematicheskaya Fizika 68 (1986), No. 2, 172–186. https://doi.org/10.1007/BF01035537
V.P. Kotlyarov and, A.M. Minakov, Riemann–Hilbert problem to the modified Korteveg–de Vries equation: Long-time dynamics of the step-like initial data, J. Math. Phys. 51 (2010), 093506. https://doi.org/10.1063/1.3470505
V.P. Kotlyarov and A. Minakov. Dispersive shock wave, generalized Laguerre polynomials, and asymptotic solitons of the focusing nonlinear Schrödinger equation, J. Math. Phys. 60 (2019), 123501. https://doi.org/10.1063/1.5096896
J. Lenells, The nonlinear steepest descent method for Riemann–Hilbert problems of low regularity, Indiana Univ. Math. 66 (2017), 1287–1332. https://doi.org/10.1512/iumj.2017.66.6078
S.Y. Lou, Alice–Bob systems, P̂ − T̂ − Ĉ symmetry invariant and symmetry breaking soliton solutions, J. Math. Phys.59 (2018), 083507. https://doi.org/10.1063/1.5051989
S. Lou and F. Huang, Alice-Bob Physics: Coherent Solutions of Nonlocal KdV Systems, Scientific Reports 7 (2017), 869. https://doi.org/10.1038/s41598-017-00844-y
K.T.-R. McLaughlin and P.D. Miller, The ∂¯ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap. Art. 177 (2006), 48673.
J. Michor and A. L. Sakhnovich, GBDT and algebro-geometric approaches to explicit solutions and wave functions for nonlocal NLS, J. Phys. A: Math. Theor. 52 (2018), 025201. https://doi.org/10.1088/1751-8121/aaedeb
A. Minakov, Asymptotics of step-like solutions for the Camassa–Holm equation, J. Differential Equations 261, No. 11 (2016). https://doi.org/10.1016/j.jde.2016.08.028
M. Onorato, A.R. Osborne, and M. Serio, Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves, Phys. Rev. Lett. 96 (2006), 014503. https://doi.org/10.1103/PhysRevLett.96.014503
Ya. Rybalko and D. Shepelsky, Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation, J. Math. Phys. 60 (2019), 031504. https://doi.org/10.1063/1.5036705
Ya. Rybalko and, D. Shepelsky, Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation with step-like initial data, J. Differential Equations 270 (2021), 694–724. https://doi.org/10.1016/j.jde.2020.08.003
Ya. Rybalko and D. Shepelsky, Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-like initial data, Comm. Math. Phys. (accepted), preprint, https://arxiv.org/abs/1908.06415.
Ya. Rybalko, D. Shepelsky, Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation, preprint, https://arxiv.org/ abs/2004.05987.
S. Venakides, P. Deift, and R. Oba, The Toda shock problem, Comm. Pure Appl. Math. 44 (1991), 1171–1242. https://doi.org/10.1002/cpa.3160440823
A. Sarma, M. Miri, Z. Musslimani, and D. Christodoulides, Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities, Phys. Rev. E 89 (2014). https://doi.org/10.1103/PhysRevE.89.052918
J. Yang, General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations, Phys. Lett. A 383 (2019), No. 4, 328–337. https://doi.org/10.1016/j.physleta.2018.10.051
B. Yang and J. Yang, General rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation, Lett. Math. Phys. 109 (2019), 945–973. https://doi.org/10.1007/s11005-018-1133-5
V.E. Zakharov and L.A. Ostrovsky, Modulation instability: The beginning, Phys. D 238 (2009), 540–548. https://doi.org/10.1016/j.physd.2008.12.002
Y. Zhang, D. Qiu, Y. Cheng, and J. He, Rational Solution of the Nonlocal Nonlinear Schroedinger Equation and Its Application in Optics, Romanian Journal of Physics 62 (2017), 108.
M. Znojil and D.I. Borisov, Two patterns of PT-symmetry break- down in a nonnumerical six-state simulation, Ann. Phys., NY 394 (2018), 40–49. https://doi.org/10.1016/j.aop.2018.04.023