A Kastler-Kalau-Walze Type Theorem for 7-Dimensional Manifolds with Boundary about Witten Deformation

Автор(и)

  • Kai Hua Bao School of Mathematics and Physics, Inner Mongolia University for the Nationalities, TongLiao, 028005, P. R. China
  • Ai Hui Sun College of Mathematics, Jilin Normal University, Siping, 136000, P. R. China
  • Kun Ming Hu School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P. R. China

DOI:

https://doi.org/10.15407/mag17.02.119

Анотація

У цій роботі ми методом повного перебору доводимо теорему типу Кастлера-Калау-Вальце про деформацію Віттена для $7$-вимірних многовидів з межею і даємо теоретичне пояснення гравітаційної дії для $7$-вимірних многовидів з межею.

Mathematics Subject Classification: 58G20, 53A30, 46L87

Ключові слова:

деформація Віттена, некомутативний залишок для многовидів з межею, низьковимірний об'єм

Посилання

T. Ackermann, A note on the Wodzicki residue, J. Geom. Phys. 20 (1996), 404–406. https://doi.org/10.1016/S0393-0440(95)00061-5

Kai Hua Bao and Ying Lei, The Kastler–Kalau–Walze type theorem about Witten deformation for manifolds with boundary, J. Geom. Phys. 131 (2018), 170–181. https://doi.org/10.1016/j.geomphys.2018.04.013

Kai Hua Bao, Ai Hui Sun, and Chao Deng, The Noncommutative Residue about Witten Deformation, Acta Math. Appl. Sin. Engl. Ser. 35 (2019), 550–568. https://doi.org/10.1007/s10114-018-8069-7

Kai Hua Bao, Ai Hui Sun, and Jian Wang, A Kastler–Kalau–Walze Type Theorem for 7-dimensional spin manifolds with boundary about Dirac operators with torsion, Zh. Mat. Fiz. Anal. Geom 110 (2016), 213–232. https://doi.org/10.1016/j.geomphys.2016.08.005

A. Connes, Quantized calculus and applications, XIth International Congress of Mathematical Physics (Paris, 1994), Internat Press, Cambridge, MA, 1995, 15–36.

A. Connes, The action functinal in Noncommutative geometry, Comm. Math. Phys. 117 (1998), 673–683. https://doi.org/10.1007/BF01218391

B.V. Fedosov, F. Golse, E. Leichtnam, and E. Schrohe, The noncommutative residue for manifolds with boundary, J. Funct. Anal. 142 (1996), 1–31. https://doi.org/10.1006/jfan.1996.0142

V.W. Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math. 55 (1985), 131–160. https://doi.org/10.1016/0001-8708(85)90018-0

W. Kalau and M. Walze, Gravity, Noncommutative geometry and the Wodzicki residue, J. Geom. Physics. 16 (1995), 327–344. https://doi.org/10.1016/0393-0440(94)00032-Y

D. Kastler, The Dirac Operator and Gravitation, Comm. Math. Phys. 166 (1995), 633–643. https://doi.org/10.1007/BF02099890

R. Ponge, Noncommutative geometry and lower dimensional volumes in Riemannian geometry, Lett. Math. Phys. 83 (2008), 19–32. https://doi.org/10.1007/s11005-007-0199-2

W.J. Ugalde, Differential forms and the Wodzicki residue, preprint, https://arxiv. org/abs/math/0211361.

J. Wang, Y. Wang, and C.L. Yang, A Kastler–Kalau–Walze Type Theorem for 7Dimensional Manifolds with Boundary, Abstr. Appl. Anal. 2014 (2014), Art. ID: 465782. https://doi.org/10.1155/2014/465782

J. Wang, Y. Wang, and C.L. Yang, Dirac operators with torsion and the noncommutative residue for manifolds with boundary, J. Geom. Physics. 81 (2014), 92–111. https://doi.org/10.1016/j.geomphys.2014.03.007

Y. Wang, Diffential forms and the Wodzicki residue for Manifolds with Boundary, J. Geom. Physics 56 (2006), 731–753. https://doi.org/10.1016/j.geomphys.2005.04.015

Y. Wang, Diffential forms the Noncommutative Residue for Manifolds with Boundary in the non-product Case, Lett. Math. Phys. 77 (2006), 41–51. https://doi.org/10.1007/s11005-006-0078-2

Y. Wang, Gravity and the Noncommutative Residue for Manifolds with Boundary, Lett. Math. Phys. 80 (2007), 37–56. https://doi.org/10.1007/s11005-007-0147-1

Y. Wang, Lower-Dimensional Volumes and Kastler–kalau–Walze Type Theorem for Manifolds with Boundary, Commun. Theor. Phys. 54 (2010), 38–42. https://doi.org/10.1088/0253-6102/54/5/03

M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75(1) (1995), 143–178. https://doi.org/10.1007/BF01403095

Y. Yu,The Index Theorem and The Heat Equation Method, Nankai Tracts in Mathematics, 2, World Scientific, Singapore, 2001. https://doi.org/10.1142/4691

Y. Yu, N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-642-58088-8

W. Zhang, Lectures on chern-weil theory and witten deformation, Nankai Tracts in Mathematics, 4, World Scientific, Singapore, 2001. https://doi.org/10.1142/4756

Downloads

Як цитувати

(1)
Bao, K. H.; Sun, A. H.; Hu, K. M. A Kastler-Kalau-Walze Type Theorem for 7-Dimensional Manifolds with Boundary about Witten Deformation. Журн. мат. фіз. анал. геом. 2021, 17, 119-145.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.