General Decay Result for a Type III Thermoelastic Coupled System with Acoustic Boundary Conditions in the Presence of Distributed Delay
DOI:
https://doi.org/10.15407/mag17.02.175Анотація
У статті вивчаються розв'язки загального згасання енергії для термопружної зв'язаної системи третього типу з розподіленою затримкою часу. Зв'язування відбувається завдяки акустичним граничним умовам. Наш результат одержано в класі загальності функції релаксації і тому ця робота суттєво покращує попередні результати в термопружності.Mathematics Subject Classification: 35B40, 74D05, 74F05, 93D15
Ключові слова:
ефект термопружності, акустичні граничні умови, в'язкопружне демпфірування, загальне згасанняПосилання
M.M. Al-Gharabli, A.M. Al-Mahdi, and S.A. Messaoudi, General and optimal decay result for a viscoelastic problem with nonlinear boundary feedback, J. Dyn. Control Syst. 25 (2019), No. 4, 551–572. https://doi.org/10.1007/s10883-018-9422-y
F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, Compt. Rend. Math. 347 (2009), No. 15, 867–872. https://doi.org/10.1016/j.crma.2009.05.011
V.I. Arnold, Mathematical Methods of Classical Mechanics, 60, Springer Science & Business Media, 2013.
G. Avalos, I. Lasiecka, and R. Rebarber, Uniform decay properties of a model in structural acoustics, J. Math. Pures Appl. 79 (2000), No. 10, 1057–1072. https://doi.org/10.1016/S0021-7824(00)00173-2
J.T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J. 25 (1976), No. 9, 895–917. https://doi.org/10.1512/iumj.1976.25.25071
J.T. Beale and S.I. Rosencrans, Acoustic boundary conditions, Bull. Am. Math. Soc. 80 (1974), No. 6, 1276–1279. https://doi.org/10.1090/S0002-9904-1974-13714-6
Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal. 97 (2014), 191–209. https://doi.org/10.1016/j.na.2013.11.019
Y. Boukhatem and B. Benabderrahmane, General decay for a viscoelastic equation of variable coefficients with a time-varying delay in the boundary feedback and acoustic boundary conditions, Acta Math. Sci. 37 (2017), No. 5, 1453–1471. https://doi.org/10.1016/S0252-9602(17)30084-X
Y. Boukhatem and B. Benabderrahmane, Asymptotic behavior for a past history viscoelastic problem with acoustic boundary conditions, Appl. Anal. 99 (2020), No. 2, 249–269. https://doi.org/10.1080/00036811.2018.1491034
P. Braz e Silva, H.R. Clark, and C.L. Frota, On a nonlinear coupled system of thermoelastic type with acoustic boundary conditions, Comput. Appl. Math. 36 (2017), No. 1, 397–414. https://doi.org/10.1007/s40314-015-0236-1
M.M. Cavalcanti, V.N.D. Cavalcanti, J.S.P. Filho, and J.A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential Integral Equations 14 (2001), No. 1, 85–116.
C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal. 37 (1970), No. 4, 297–308. https://doi.org/10.1007/BF00251609
R. Datko, J. Lagnese, and M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), No. 1, 152–156. https://doi.org/10.1137/0324007
A. Fareh and S.A. Messaoudi, Stabilization of a type III thermoelastic Timoshenko system in the presence of a time-distributed delay, Math. Nachr. 290 (2017), No. 7, 1017–1032. https://doi.org/10.1002/mana.201500203
T.B. Fastovska, On the Long-time behavior of the thermoelastic plates with second sound, Zh. Mat. Fiz. Anal. Geom. 9 (2013), No. 2, 191–206
E. Fridman, S. Nicaise, and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim. 48 (2010), No. 8, 5028–5052. https://doi.org/10.1137/090762105
C.L. Frota and N.A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Contributions to nonlinear analysis, Birkhäuser Basel, 2005, pp. 297–312. https://doi.org/10.1007/3-7643-7401-2_20
A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elasticity 31 (1993), No. 3, 189–208. https://doi.org/10.1007/BF00044969
A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl. 382 (2011), No. 2, 748–760. https://doi.org/10.1016/j.jmaa.2011.04.079
A. Guesmia and N.-e. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Commun. Pure Appl. Anal. 14 (2014), No. 2, 457–491. https://doi.org/10.3934/cpaa.2015.14.457
M. Kafini, S.A. Messaoudi, and M.I. Mustafa, Energy decay rates for a Timoshenkotype system of thermoelasticity of type III with constant delay, Appl. Anal. 93 (2014), No. 6, 1201–1216. https://doi.org/10.1080/00036811.2013.823480
M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys. 62 (2011), No. 6, 1065–108. https://doi.org/10.1007/s00033-011-0145-0
V. Komornik, Exact controllability and stabilization : the multiplier method, 39, Wiley Chichester, 1994.
I. Lasiecka, S.A. Messaoudi, and M.I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys. 54 (2013), No. 3, 031504. https://doi.org/10.1063/1.4793988
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), No. 3, 507–533.
Z. Liu and S. Zheng, Semigroups associated with dissipative systems, 398, CRC Press, 1999.
S.A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl. 341 (2008), No. 2, 1457–1467. https://doi.org/10.1016/j.jmaa.2007.11.048
M.M. Miranda and L.A. Medeiros, On boundary value problem for wave equations: Existence Uniqueness-Asymptotic behavior, Rev. Mat. Apl. 17 (1996), No. 2, 47–73.
P.M. Morse and K.U. Ingard, Theoretical acoustics, Princeton University Press, Princeton, NJ, 1986.
J.E. Muñoz Rivera and M.G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl. 326 (2007), No. 1, 691–707. https://doi.org/10.1016/j.jmaa.2006.03.022
M.I. Mustafa, A uniform stability result for thermoelasticity of type III with boundary distributed delay, J. Math. Anal. Appl. 415 (2014), No. 1, 148–158. https://doi.org/10.1016/j.jmaa.2014.01.080
M.I. Mustafa, Asymptotic stability for the second order evolution equation with memory, J. Dyn. Control Syst. 25 (2019), No. 2, 263–273. https://doi.org/10.1007/s10883-018-9410-2
M.I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci. 41 (2018), No. 1, 192–204. https://doi.org/10.1002/mma.4604
M.I. Mustafa and S.A. Messaoudi, General stability result for viscoelastic wave equations, J. Math. Phys. 53 (2012), No. 5, 053702. https://doi.org/10.1063/1.4711830
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), No. 5, 1561–1585. https://doi.org/10.1137/060648891
J.Y. Park and S.H. Park, Decay rate estimates for wave equations of memory type with acoustic boundary conditions, Nonlinear Anal. 74 (2011), No. 3, 993–998. https://doi.org/10.1016/j.na.2010.09.057
V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal. 9 (2010), No. 3, 721–730. https://doi.org/10.3934/cpaa.2010.9.721
R. Racke, Asymptotic behavior of solutions in linear 2- or 3-D thermoelasticity with second sound, Quart. Appl. Math. 61 (2003), No. 2, 315–328. https://doi.org/10.1090/qam/1976372
M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quart. Appl. Math. 50 (1992), No. 4, 727–742. https://doi.org/10.1090/qam/1193663
X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III, Commun. Contemp. Math. 5 (2003), No. 1, 25–83. https://doi.org/10.1142/S0219199703000896
E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl. 74 (1995), No. 4, 291–316.