Stability of Complex Functional Equations in 2-Banach Spaces

Автор(и)

  • Anshul Rana School of Mathematics, Thapar Institute of Engineering & Technology, Patiala-147004, India
  • Ravinder Kumar Sharma School of Mathematics, Thapar Institute of Engineering & Technology, Patiala-147004, India
  • Sumit Chandok School of Mathematics, Thapar Institute of Engineering & Technology, Patiala-147004, India

DOI:

https://doi.org/10.15407/mag17.03.341

Анотація

У роботi ми одержуємо деякi результати для стiйкостi Хайерса–Улама наступних рiвнянь

q(x + iy) + q(xiy) + q(y + ix) + q(yix) = 2q(x) + 2q(y)

і

q(x + iy) + q(xiy) + q(y + ix) + q(yix) = 0

за у 2-банахових просторах.

Mathematics Subject Classification: 39B32, 39B72, 39A45

Ключові слова:

2-нормованi простори, 2-банаховi простори, стiйкiсть Хайерса–Улама–Рассiаса, адитивне вiдображення, квадратичне рiвняння

Посилання

M.R. Abdollahpour and T.M. Rassias Hyers–Ulam stability of hypergeometric differential equations, Aequationes Math. 93 (2019), 691–698. https://doi.org/10.1007/s00010-018-0602-3

M.R. Abdollahpour, R. Aghayari and Th. M. Rassias Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl. 437 (2016), 605–612. https://doi.org/10.1016/j.jmaa.2016.01.024

J. Aczél and J. Dhombres, Functional Equations in Several Variables, 31. Cambridge University Press, Cambridge, 1989.

J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York-London 1966.

A. Alexiewicz and W. Orlicz, Remarque sur l’équation fonctionnelle f (x + y) = f (x) + f (y), Fund. Math. 33 (1945), 314–315 (French). https://doi.org/10.4064/fm-33-1-314-315

S. Banach, Sur l’équation fonctionnelle f (x + y) = f (x) + f (y), Fund. Math. 1 (1920), 123–124 (French). https://doi.org/10.4064/fm-1-1-123-124

S.G. Berlin, A. Siddiqi, and S. Gupta, Contributions to non-archimedean functional analysis, Math. Nachr. 69 (1975), 163–171. https://doi.org/10.1002/mana.19750690116

H. Blumberg, On convex functions, Trans. Amer. Math. Soc. 20 (1919), 40–44. https://doi.org/10.1090/S0002-9947-1919-1501114-0

J. Cao and B. Ma, On the stability of a linear functional equation in generalized quasi-Banach spaces, CCIE ’10: Proceedings of the 2010 International Conference on Computing, Control and Industrial Engineering, 2, IEEE Computer Society, 2010, 382–385. https://doi.org/10.1109/CCIE.2010.214

A.L. Cauchy, Cours d’Analyse de l’École Royale Polytechnique, I-re Partie: Analyse algébrique, L’Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi, 1821 (French).

Y. Cho, P. Lin, S. Kim, and A. Misiak, Theory of 2-inner Product Spaces, Nova Science Publishers, 2001.

P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86. https://doi.org/10.1007/BF02192660

S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 64, 1992, 59–64. https://doi.org/10.1007/BF02941618

G. Darboux, Sur la composition des forces en statique, Bulletin Des Sciences Mathématiques et Astronomiques 9 (1875), 281–288 (French).

M. Darboux, Sur le théorčme fondamental de la géométrie projective, Math. Ann. 17 (1880), 55–61 (French). https://doi.org/10.1007/BF01444119

T. Figiel, O równaniu funkcyjnym f (x + y) = f (x) + f (y), Wiad. Mat. 11 (1969), 15–18 (Polish). https://doi.org/10.14708/wm.v11i1.2099

M. Fréchet, Pri la funkcia equacio f (x+y) = f (x)+f (y), Enseign. Math. 15 (1913), 390–393 (Italian).

S. Gähler, Lineare 2-normierte räume, Math. Nachr. 28 (1964), 1–43 (German). https://doi.org/10.1002/mana.19640280102

Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434. https://doi.org/10.1155/S016117129100056X

P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211

H. Gunawan, On finite dimensional 2-normed spaces, Soochow J. Math. 27 (2001), 321–330. https://doi.org/10.1155/S0161171201010675

G. Hamel, Eine basis aller zahlen und die unstetigen lösungen der funktionalgleichung: f (x + y) = f (x) + f (y), Math. Ann. 60 (1905), 459–462 (German). https://doi.org/10.1007/BF01457624

D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.6.315

S.Y. Jang, J.R. Lee, C. Park, and D.Y. Shin, Fuzzy stability of Jensen-type quadratic functional equations, Abstr. Appl. Anal. 2009(2009). https://doi.org/10.1155/2009/535678

A. Járai, Regularity Properties of Functional Equations in Several Variables, Springer, New York, 2005.

S.-M. Jung, On the Hyers–Ulam–Rassias stability of a quadratic functional equation, J. Math. Anal. Appl. 232 (1999), 384–393. https://doi.org/10.1006/jmaa.1999.6282

S.-M. Jung, T.M. Rassias, and C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput. 252 (2015), 294–303. https://doi.org/10.1016/j.amc.2014.12.019

M. Kac, Une remarque sur les équations fonctionelles, Comment. Math. Helv. 9 (1936), 170–171. https://doi.org/10.1007/BF01258186

P. Kannappan, Cauchy equations and some of their applications, in Topics in Mathematical Analysis: A Volume Dedicated to the Memory of A.L. Cauchy, World Scientific, Singapore, 1989, 518–538. https://doi.org/10.1142/9789814434201_0023

P. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368–372. https://doi.org/10.1007/BF03322841

H. Kestelman, On the functional equation f (x + y) = f (x) + f (y), Fund. Math. 1 (1947), 144–147. https://doi.org/10.4064/fm-34-1-144-147

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s equation and Jensen’s inequality. Birkhäuser, Basel-Boston-Berlin, 2009. https://doi.org/10.1007/978-3-7643-8749-5

Y.H. Kwon, H.M. Lee, J.S. Sim, J.Yang, and C.Park, Generalized Hyers–Ulam stability of functional equations, J. Chungcheong Math. Soc. 20 (2007), 337–399.

J.R. Lee, J.S. An, and C. Park, On the stability of quadratic functional equations, Abstr. Appl. Anal. 2008, 2008. https://doi.org/10.1155/2008/628178

Y.H. Lee, S.M. Jung, and T.M. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), 43– 61. https://doi.org/10.7153/jmi-2018-12-04

Z. Lewandowska, Linear operators on generalized 2–normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) (1999), 353–368.

Z. Lewandowska, On 2–normed sets, Glas. Mat. 38 (2003), 99–110. https://doi.org/10.3336/gm.38.1.08

H. Mazaheri and R. Kazemi, Some results on 2-inner product spaces, Novi Sad J. Math. 37 (2007), 35–40.

M. Mehdi, On convex functions, J. Lond. Math. Soc. 1 (1964), 321–326. https://doi.org/10.1112/jlms/s1-39.1.321

C. Mortici, T.M. Rassias and S.M. Jung, On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal. 2014, 2014. https://doi.org/10.1155/2014/546046

A. Ostrowski, Mathematische miszellen. XIV. Über die funktionalgleichung der exponentialfunktion und verwandte funktionalgleichungen, Jahresber. Dtsch. Math.Ver. 38 (1929), 54–62 (German).

C.G. Park, On the stability of the quadratic mapping in Banach modules, J. Math. Anal. Appl. 276(2002), 135–144. https://doi.org/10.1016/S0022-247X(02)00387-6

C. Park and T.M. Rassias Additive functional equations and partial multipliers in C ∗ - algebras, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Math. RACSAM 113 (2019), 2261–2275. https://doi.org/10.1007/s13398-018-0612-y

T.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1

T.M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. (1992), 989–993. https://doi.org/10.1090/S0002-9939-1992-1059634-1

W. Sierpiński, Sur l’équation fonctionnelle f (x + y) = f (x) + f (y), Fund. Math. 1 (1920), 116–122 (French). https://doi.org/10.4064/fm-1-1-116-122

W. Sierpiński, Sur les fonctions convexes mesurables, Fund. Math. 1 (1920), 125–128 (French). https://doi.org/10.4064/fm-1-1-125-128

F. Skof, Proprieta’locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano 53 (1983) , 113–129 (Italian). https://doi.org/10.1007/BF02924890

C. Stefan, Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey-London-Singapore-Hong Kong, 2002.

T. Trif, Hyers–Ulam–Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253–267. https://doi.org/10.4134/BKMS.2003.40.2.253

S.M. Ulam, Problem in Modern Mathematics, Dover Publications, Mineola, New York, 2004.

J.A. White and Y.-J. Cho, Linear mappings on linear 2-normed spaces, Bull. Korean Math. Soc. 21 (1984), 1–5.

A.G. White (Jr), 2-Banach spaces, Math. Nachr., 42 (1969), 43–60. https://doi.org/10.1002/mana.19690420104

Downloads

Як цитувати

(1)
Rana, A.; Sharma, R. K.; Chandok, S. Stability of Complex Functional Equations in 2-Banach Spaces. Журн. мат. фіз. анал. геом. 2021, 17, 341-368.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.