Exact Solutions of Nonlinear Equations in Mathematical Physics via Negative Power Expansion Method

Автор(и)

  • Bo Xu School of Mathematics, China University of Mining and Technology, Xuzhou 221116,China
    School of Educational Science, Bohai University, Jinzhou 121013, China
  • Sheng Zhang School of Mathematics and Physics, Bohai University, Jinzhou 121013, China

DOI:

https://doi.org/10.15407/mag17.03.369

Анотація

У статтi представлено прямий метод, що називається методом негативного розширення потужностi (НРП), який застосовано для побудови точних розв’язкiв нелiнiйних рiвнянь математичної фiзики. Запропонований метод (НРП) є також ефективним для зв’язаних рiвнянь, рiвнянь зi змiнним коефiцiєнтом та деяких iнших спецiальних видiв рiвнянь. Щоб показати ефективнiсть даного методу, було розглянуто (2 + 1)-вимiрне дисперсiйне рiвняння для довгої хвилi, рiвняння Маккарi, рiвняння Цицейки–Додда–Буллоу, рiвняння Савада–Котера зi змiнними коефiцiєнтами та два рiвняння решiтки. У результатi одержано точнi розв’язки, включаючи розв’язки рiвняння бiжної хвилi, рiвняння небiжної хвилi та напiвдискретнi розв’язки. У статтi показано, що метод НРП - це простий та ефективний спосiб розв’язку нелiнiйних рiвнянь в математичнiй фiзицi.

Mathematics Subject Classification: 35Q51, 35J99, 68W30

Ключові слова:

точний розв’язок, метод НРП, (2 1)-вимiрне дисперсiйне рiвняння для довгої хвилi, рiвняння Маккарi, рiвняння Цицейки–Додда–Буллоу, рiвняння Савада–Котера зi змiнними коефiцiєнтами, рiвняння решiтки

Посилання

M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, New York, 1991. https://doi.org/10.1017/CBO9780511623998

I. Aslan, Multi-wave and rational solutions for nonlinear evolution equations, Int. J. Nonlinear Sci. Numer. Simul. 11 (2010), 619–623. https://doi.org/10.1515/IJNSNS.2010.11.8.619

I. Aslan, Rational and multi-wave solutions to some nonlinear physical models, Rom. J. Phys. 58 (2013), 893–903.

C.Q. Dai, Y. Fan, and N. Zhang, Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method, Appl. Math. Lett. 96 (2019), 20–26. https://doi.org/10.1016/j.aml.2019.04.009

U.C. De and K. Mandal, Ricci solitons and gradient Ricci solitons on N(k)paracontact manifolds, Zh. Mat. Fiz. Anal. Geom. 15 (2019), 369–378. https://doi.org/10.15407/mag15.03.369

E.G. Fan, Soliton solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled MKdV equation, Phys. Lett. A 282 (2001), 18–22. https://doi.org/10.1016/S0375-9601(01)00151-7

C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097. https://doi.org/10.1103/PhysRevLett.19.1095

J.H. He and M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Soliton. Fract. 34 (2007), 1421–1429. https://doi.org/10.1016/j.chaos.2006.04.052

J.H. He, F.Y. Ji, and H. Mohammad-Sedighi, Difference equation vs differential equation on different scales, Internat. J. Numer. Methods Heat Fluid Flow 31 (2021), 391-401 https://doi.org/10.1108/HFF-03-2020-0178

J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract. 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020

R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192–1194. https://doi.org/10.1103/PhysRevLett.27.1192

F.Y. Ji, C.H. He, J.J. Zhang, and J.H. He,A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar, Appl. Math. Model. 32 (2020), 437–448. https://doi.org/10.1016/j.apm.2020.01.027

Z.Z. Kang and T.C. Xia, Multi-solitons for the coupled Fokas–Lenells system via Riemann–Hilbert approach, Chinese Phys. Lett. 35 (2018), Article ID 070201. https://doi.org/10.1088/0256-307X/35/7/070201

C.Z. Li and H.J. Zhou, Solutions of the Frobenius coupled KP equation, Zh. Mat. Fiz. Anal. Geom. 15 (2019), 369–378. https://doi.org/10.15407/mag15.03.369

Y. Liu, Y.T. Gao, Z.Y. Sun, and X. Yu, Multi-soliton solutions of the forced variablecoefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves, Nonlinear Dyn. 66 (2011), 575–587. https://doi.org/10.1007/s11071-010-9922-0

W.H. Liu and Y.F. Zhang, Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation, Appl. Math. Lett. 98 (2019), 184–190. https://doi.org/10.1016/j.aml.2019.05.038

A. Maccari, The Kadomtsev-Petviashvili equation as a source of integrable model equations, J. Math. Phys. 37 (1996), 6207–6212. https://doi.org/10.1063/1.531773

W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60 (1992), 650–654. https://doi.org/10.1119/1.17120

W.J. Rui and Y.F. Zhang, Soliton and lump-soliton solutions in the Grammian form for the Bogoyavlenskii–Kadomtsev–Petviashvili equation, Adv. Differential Equations 2020 (2020), Article ID 195. https://doi.org/10.1186/s13662-020-02602-3

V.N. Serkin, A. Hasegawa, and T.L. Belyaeva, Nonautonomous solitons in external potentials, Phys. Rev. Lett. 98 (2007), Article ID 074102. https://doi.org/10.1103/PhysRevLett.98.074102

X.Y. Shan and J.Y. Zhu, The Mikhauilov–Novikov–Wang hierarchy and its Hamiltonian structures, Acta Phys. Pol. B 43 (2012), 1953–1963. https://doi.org/10.5506/APhysPolB.43.1953

D.D. Shi and Y.F. Zhang, Diversity of exact solutions to the conformable space-time fractional MEW equation, Appl. Math. Lett. 99 (2020), Article ID 105994. https://doi.org/10.1016/j.aml.2019.07.025

B. Xu and S. Zhang, A novel approach to time-dependent-coefficient WBK system: doubly periodic waves and singular nonlinear dynamics, Complexity, 2018 (2018), Article ID 3158126. https://doi.org/10.1155/2018/3158126

B. Xu and S. Zhang, Integrability, exact solutions and nonlinear dynamics of a nonisospectral integral-differential system, Open Phys. 17 (2019), 299–306. https://doi.org/10.1515/phys-2019-0031

B. Xu and S. Zhang, Exact solutions with arbitrary functions of the (4+1)dimensional Fokas equation, Therm. Sci. 23 (2019), No. 4, 2403–2411. https://doi.org/10.2298/TSCI1904403X

B. Xu and S. Zhang, Derivation and soliton dynamics of a new non-isospectral and variable-coefficient system, Therm. Sci. 23 (2019), Suppl. 3, S639–S646. https://doi.org/10.2298/TSCI180510076X

B. Xu, L.J. Zhang, and S. Zhang, Analytical insights into three models: exact solutions and nonlinear vibrations, J. Low Freq. Noise Vib. Active Control 38 (2019), 901–913. https://doi.org/10.1177/1461348418811455

Z.Y. Yan and H.Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water, Phys. Lett. A 285 (2001), 355–362. https://doi.org/10.1016/S0375-9601(01)00376-0

S. Zhang, Exp-function method for constructing explicit and exact solutions of a lattice equation, Appl. Math. Comput. 199 (2008), 242–249. https://doi.org/10.1016/j.amc.2007.09.051

S. Zhang and M.A. Abdou, Exact solutions of the mKdV and Sawada-Kotera equations with variable coefficients via exp-function method, J. Appl. Math. Inform. 28 (2010), 143–152.

S. Zhang and B. Cai, Multi-soliton solutions of a variable-coefficient KdV hierarchy, Nonlinear Dyn. 78 (2014), 1593–1600. https://doi.org/10.1007/s11071-014-1481-3

S. Zhang, J.H. Li, and L.Y Zhang, A direct algorithm of exp-function method for non-linear evolution equations in fluids, Therm. Sci. 20 (2016), 881–884. https://doi.org/10.2298/TSCI1603907Z

S. Zhang and T.C. Xia, A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations, Appl. Math. Comput. 183 (2006), 1190– 1200. https://doi.org/10.1016/j.amc.2006.06.043

S. Zhang and T.C. Xia, A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, J. Phys. A: Math. Theor. 40 (2007), 227–248. https://doi.org/10.1088/1751-8113/40/2/003

S. Zhang and T.C. Xia, A further improved tanh function method exactly solving the (2+1)-dimensional dispersive long wave equations, Appl. Math. E-Notes 8(2008), 58–66.

S. Zhang, B. Xu, and H.Q. Zhang, Exact solutions of a KdV equation hierarchy with variable coefficients, Int. J. Comput. Math. 91 (2014), 1601–1616. https://doi.org/10.1080/00207160.2014.883069

S. Zhang, C.H. You, and B. Xu, Simplest exp-function method for exact solutions of Mikhauilov-Novikov-Wang equations, Therm. Sci. 23 (2019), 2381–2388. https://doi.org/10.2298/TSCI180322124Z

S. Zhang and H.Q. Zhang, Discrete Jacobi elliptic function expansion method for nonlinear differential-difference equations, Phys. Scripta, 80 (2009) Article ID 045002. https://doi.org/10.1088/0031-8949/80/04/045002

S. Zhang and H.Q. Zhang, Exp-function method for N-soliton solutions of nonlinear differential-difference equations, Z. Naturforsch. A 65 (2010), 924–934. https://doi.org/10.1515/zna-2010-1105

S. Zhang and H.Q. Zhang, A transformed rational function method for (3+1)dimensional potential YTSF equation, Pramana J. Phys. 76 (2011), 561–571. https://doi.org/10.1007/s12043-011-0068-5

S. Zhang, L.J. Zhang, and B. Xu, Rational waves and complex dynamics: analytical insights into a generalized nonlinear Schrödinger equation with distributed coefficients, Complexity 2019 (2019), Article ID 3206503. https://doi.org/10.1155/2019/3206503

S. Zhang and Q.A. Zong,Exact solutions with external linear functions for the potential Yu-Toda–Sasa–Fukuyama equation, Therm. Sci. A 22 (2018), 1621–1628. https://doi.org/10.2298/TSCI1804621Z

Y.B. Zhou, M.L. Wang, and Y.M. Wang, Periodic wave solutions to a coupled KdV equation with variable coefficients, Phys. Lett. A 308 (2003), 31–36. https://doi.org/10.1016/S0375-9601(02)01775-9

Downloads

Як цитувати

(1)
Xu, B.; Zhang, S. Exact Solutions of Nonlinear Equations in Mathematical Physics via Negative Power Expansion Method. Журн. мат. фіз. анал. геом. 2021, 17, 369-387.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.