Berezin Transforms Attached to Landau Levels on the Complex Projective Space Pn(ℂ)
DOI:
https://doi.org/10.15407/mag17.04.422Анотація
Ми будуємо когерентнi стани для кожного власного простору магнiтного лапласiана в комплексному проєктивному n-просторi для того, щоб застосувати метод квантизацiї-деквантизацiї. Це дозволяє визначити перетворення Березiна для цих просторiв. Потiм ми встановлюємо формулу для цього перетворення як функцiю вiд лапласiана Фубiнi–Штудi в замкненiй формi, яка мiстить кiнцеву функцiю Кампе де Ферiє. Для найнижчого сферичного рiвня Ландау на рiмановiй сферi одержана формула зводиться до формули одержаної самим Березiним.
Mathematics Subject Classification: 81Q10, 47G10, 58C40, 46E22
Ключові слова:
комплексний проєктивний простiр, когерентнi стани, перетворення Березiна, магнiтний лапласiан, лапласiан Фубiнi–Штудi, формула Курнвiндера, спiввiдношення Клебша–Ґордана, функцiя Кампе де ФерiєПосилання
S.T. Ali and M. Englis, Quantization methods, a guide for physical and analysts, Rev. Math. Phys. 17 (2005), 391–490. https://doi.org/10.1142/S0129055X05002376
S.T. Ali, J.P. Antoine, and J.P. Gazeau, Coherent States, Wavelets, and Their Generalizations. Springer, New York, 2014. https://doi.org/10.1007/978-1-4614-8535-3
G.E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9781107325937
J. Arazy, S.D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989–1053. https://doi.org/10.2307/2374685
N. Askour, A. Intissar, and M. Ziyat, Spectral theory of magnetic Berezin transforms on the complex projective space, Complex Anal. Oper. Theory, 12 (2018), 705–727. https://doi.org/10.1007/s11785-017-0738-5
W.N. Bailey. Generalized Hypergeometric Series, Stechert-Hafner, New York 1964.
F.A. Berezin, Quantization, Math. USSR Izvestija 38 (1974), 1116–1175.
F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izvestija 9 (1975), 341–397. https://doi.org/10.1070/IM1975v009n02ABEH001480
F.A. Berezin, General concept of quantization, Comm. Math. Phys. 40 (1975), No 2, 153–174. https://doi.org/10.1007/BF01609397
C. Berger, L. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), 273–299. https://doi.org/10.1016/0022-1236(86)90099-6
F.A. Berezin and I.M. Gelfand, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Transl. Amer. Math. Soc. 21 (1962), 193–238. https://doi.org/10.1090/trans2/021/07
G. Besson, B. Colbois, and G. Courtois, Sur la multiplicité de la première valeur propre de l’opérateur de Schrödinger avec champ magnétique sur la sphère S 2 , Trans. Amer. Math. Soc. 350, (1998), 331-345. https://doi.org/10.1090/S0002-9947-98-01778-4
H. Boussejra, and Z. Mouayn, A new formula for Berezin transforms attached to generalized Bergman spaces on the unit Ball Bn , Moscow Math. J. 16, (2016), 641–649. https://doi.org/10.17323/1609-4514-2016-16-4-641-649
V.V. Dodonov, ’Nonclassical’ states in quentum optics: a ’squeezed’ review of the first 75 years, J. Opt B: Quantum Semiclass. Opt. 4 (2002), 1–33. https://doi.org/10.1088/1464-4266/4/1/101
M. Doll and S. Zelditch, Schrödinger trace invariants for homogeneous perturbations of the harmonic oscillator, J. Spectral Theory, 10 (2021), 1303–1332. https://doi.org/10.4171/JST/328
M. Dostanić,Norm of Berezin transform on Lp space, J. Anal. Math. 104, (2008), 13–23. https://doi.org/10.1007/s11854-008-0014-8
G.V. Dunne, Hilbert space for charged particles in perpendicular magnetic field, Ann. Phys. 215 (1992), 233–263. https://doi.org/10.1016/0003-4916(92)90112-Y
M. Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), 233–254. https://doi.org/10.1006/jfan.1994.1048
M. Engliš, Berezin transform and the Laplace-Beltrami operator, Algebra i Analiz, 7 (1995), 176–195.
A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, (1953).
E.V. Ferapontov and A.P. Veselov, Integrable Schrodinger operators with magnetic fields: factorization method on curved surfaces. J. Math. Phys. 42 (2001), 590–607. https://doi.org/10.1063/1.1334903
E. Fujita and T. Nomura, Spectral decompositions of Berezin transformations on Cn related to the natural U (n)-action, J. Math. Kyoto Univ. 36 (1996), 877–888. https://doi.org/10.1215/kjm/1250518458
J.P. Gazeau, Coherent States in Quantum Physics, Wiley, Weinheim, (2009). https://doi.org/10.1002/9783527628285
A. Ghanmi and, Z. Mouayn, A formula representing magnetic Berezin transforms on the unit ball of CN as functions of the Laplace-Beltrami operator, Houston J. Math. 40 (2014), No. 1, 109–126.
H. Grosse, C.W. Rupp, and A. Strohmaier, Fuzzy line bundles, the Chern character and topological charges over the fuzzy sphere, J. Geom. Phys. 42 (2002), 54–63. https://doi.org/10.1016/S0393-0440(01)00072-9
A. Hafoud and A. Intissar, Reproducing kernels of eigenspaces of a family of magnetic Laplacians on complex projective spaces CPn and their heat kernels, African J. Math. Phys. 2, No.2 (2005), 143–153.
H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, New York, Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4612-0497-8
F. Hirzebruch, Topological Methods in Algebraic Geometry. 131, Grundlehren der mathematischen Wissenschaften, Sringer, London, 1978.
M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005. https://doi.org/10.1017/CBO9781107325982
T. H. Koornwinder, The addition formula for Jacobi polynomials, 2: The Laplace type integral representation and the product formula, Report TW 133/72, Mathematisch Centrum, Amsterdam, 1972, https://doi.org/10.1016/1385-7258(72)90011-X
H.L. Manocha and H.M. Srivastava, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Limited, Chichester, 1984.
Z. Mouayn, Coherent states attached to the spectrum of the Bochner Laplacian for the Hopf fibration, J. Geom. Phys. 59 (2009), No. 2, 256–261. https://doi.org/10.1016/j.geomphys.2008.11.006
Z. Mouayn, Coherent states quantization for generalized Bargmann spaces with formulae for their attached Berezin transforms in terms of the Laplacian on Cn , J. Fourier Anal. Appl. 18 (2012), No. 3, 609–625. https://doi.org/10.1007/s00041-011-9213-2
Z. Mouayn, Discrete Bargmann Transforms Attached to Landau Levels on the Riemann Sphere, Ann. Henri Poincaré, 16 (2015), 641–650 https://doi.org/10.1007/s00023-014-0334-4
J. Peetre, The Berezin transform and Haplitz operators, J. Operator Theory, 24 (1990), No. 1, 165–186.
J. Peetre and G. Zhang, Harmonic analysis on the quantized Riemann sphere, Inter. J. Math and Math. Sci. 16, No. 2. (1993), 225–243. https://doi.org/10.1155/S0161171293000274
W. Rudin, Function theory in the unit ball of Cn , Springer, New York, (1980). https://doi.org/10.1007/978-3-540-68276-9
E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik, Naturwissenschaften, 14 (1926), 664–666. https://doi.org/10.1007/BF01507634
Y.M. Shnir, Magnetic Monopoles, Texts and Monographs in Physics. Springer, Berlin-Heidelberg, 2005. https://doi.org/10.1007/3-540-29082-6
D.J. Simms and N.M. Woodhouse, Lectures on Geometric Quantization, Lectures Notes in Physics, 53, Springer-Verlag, Berlin, 1976.
B. Simon, Universal diamagnetism of spinless boson systems, Phys. Rev. Lett. 36 (1976), 804–806. https://doi.org/10.1103/PhysRevLett.36.804
H.M. Srivastava, Some Clebsch–Gordan type linearization relations and other polynomial expansions associated with a class of generalized multiple hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 21 (1988), 4463–4470. https://doi.org/10.1088/0305-4470/21/23/026
A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563–597. https://doi.org/10.1007/BF02101491
T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys B. 107 (1976), 364–380. https://doi.org/10.1016/0550-3213(76)90143-7
G. Zhang, Berezin transform on compact Hermitian symmetric spaces, Manuscripta Mathematica, 97 (1998), 371–388. https://doi.org/10.1007/s002290050109