Uq (sl2)-Symmetries of the Quantum Disc: a Complete List
DOI:
https://doi.org/10.15407/mag17.04.484Анотація
У роботi наведено класифiкацiю $U_q(\mathfrak{sl}_2)$-симетрiй на квантовому диску. Запроваджено головний iнварiант цiєї класифiкацiї - градуювальний стрибок. Виявляється за зазначених умов градуювальний стрибок може набувати лише три значення: 0, 1, −1.
Mathematics Subject Classification: 81R50, 17B37
Ключові слова:
квантова унiверсальна обгортувальна алгебра, алгебра Горфа, квантовий диск, квантова симетрiя, градуювальний стрибок, вага, iнволюцiяПосилання
E. Abe, Hopf Algebras, Cambridge Univ. Press, Cambridge, 1980.
J. Alev and M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra (1992), 20, 1787–1802. https://doi.org/10.1080/00927879208824431
S. Duplij, Y. Hong, and F. Li, Uq (slm+1 )-module algebra structures on the coordinate algebra of a quantum vector space, J. Lie Theory 25 (2015), No. 2, 327–361.
S. Duplij and S. Sinel’shchikov, Classification of Uq (sl2 )-module algebra structures on the quantum plane, Zh. Mat. Fiz. Anal. Geom. 6 (2010), No. 4, 406–430.
C. Kassel, Quantum Groups, Springer–Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-0783-2
G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
S. Klimek and A. Lesniewski, A two-parameter quantum deformation of the unit disc, J. Funct. Anal. 115 (1993), 1–23. https://doi.org/10.1006/jfan.1993.1078
A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997. https://doi.org/10.1007/978-3-642-60896-4
G. Nagy and A. Nica, On the ‘quantum disc’ and a ‘non-commutative circle’, Algebraic Methods on Operator Theory, (Eds. R.E. Curto, P.E.T. Jorgensen), Birkhauser, Boston, 1994, 276–290. https://doi.org/10.1007/978-1-4612-0255-4_27
D. Shklyarov and G. Zhang, Covariant q-differential operators and unitary highest weight representations for Uq sun,n , J. Math. Phys. 46 (2005), No. 6, 062307. https://doi.org/10.1063/1.1927077
S. Sinel’shchikov, Generic symmetries of the Laurent extension of quantum plane, Zh. Mat. Fiz. Anal. Geom. 11 (2015), No 4, 333–358. https://doi.org/10.15407/mag11.04.333
S. Sinel’shchikov, The Laurent extension of quantum plane: a complete list of Uq (sl2 )-symmetries, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), 038.
D. Shklyarov, S. Sinel’shchikov, and L. Vaksman, q-analogues of some bounded symmetric domains, Czechoslovak J. Phys. 50 (2000), No. 1, 175–180. https://doi.org/10.1023/A:1022805922063
D. Shklyarov, S. Sinel’shchikov, and L. Vaksman, Geometric realizations for some series of representations of the quantum group SU2,2 , Math. Phys. Anal. Geom. 8 (2001), No 1, 90 – 110.
M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
L.L. Vaksman, Quantum bounded symmetric domains, Translations of Mathematical Monographs, 238, Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/mmono/238