One Class of Linearly Growing C0-Groups

Автор(и)

  • Grigory Sklyar Institute of Mathematics, University of Szczecin, Szczecin, Poland
  • Vitalii Marchenko B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
  • Piotr Polak Institute of Mathematics, University of Szczecin, Szczecin, Poland

DOI:

https://doi.org/10.15407/mag17.04.509

Анотація

Ми розглядаємо спецiальний клас C0-груп з [12], генератори яких є необмеженими, мають чисто точковий уявний спектр та вiдповiдну щiльну i мiнiмальну сiм’ю власних векторiв, яка, проте, не утворює базис Шаудера. Ми одержуємо двостороннi оцiнки норм C0- груп з цього класу i таким чином доводимо, що цi C0-групи зростають лiнiйно. Крiм того, ми доводимо, що C0-групи з класу, що розглядається, не мають жодної максимальної асимптотики. Це означає, що не iснує орбiти, що зростає найшвидше.

Mathematics Subject Classification: 47D06, 34G10, 46B45, 34K25

Ключові слова:

C0-група, лiнiйне зростання, максимальна асимптотика, XYZ теорема

Посилання

W.O. Amrein, A. Boutet de Monvel, and V. Georgescu, C0 -Groups, Commutator Methods and Spectral Theory of N -Body Hamiltonians, Modern Birkhäuser Classics, Birkhäuser, Basel, 1996. https://doi.org/10.1007/978-3-0348-0733-3

I.C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969.

J.A. Goldstein and M. Wacker, The energy space and norm growth for abstract wave equations, Appl. Math. Lett. 16 (2003), 767–772. https://doi.org/10.1016/S0893-9659(03)00080-6

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II, Reprint of the 1977, 1979 ed., Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-35347-9

M. Malejki, C0 -groups with polynomial growth, Semigroup Forum 63(3) (2001), 305–320. https://doi.org/10.1007/s002330010036

V. Marchenko, Isomorphic Schauder decompositions in certain Banach spaces, Open. Math. 12 (2014), 1714-–1732. https://doi.org/10.2478/s11533-014-0441-y

V. Marchenko, Stability of Riesz bases, Proc. Amer. Math. Soc. 146 (2018), 3345– 3351. https://doi.org/10.1090/proc/14056

V. Marchenko, Stability of unconditional Schauder decompositions in `p spaces, Bull. Aust. Math. Soc. 92) (2015), 444–456. https://doi.org/10.1017/S0004972715000775

I. Singer, Bases in Banach Spaces I, Springer-Verlag, Berlin, 1970. https://doi.org/10.1007/978-3-642-51633-7

I. Singer, On Banach spaces with symmetric bases, Rev. Roumaine Math. Pures Appl. 6 (1961), 159-–166.

G.M. Sklyar, On the maximal asymptotics for linear differential equations in Banach spaces, Taiwanese J. Math. 14 (2010), 2203–2217. https://doi.org/10.11650/twjm/1500406070

G.M. Sklyar and V. Marchenko, Hardy inequality and the construction of infinitesimal operators with non-basis family of eigenvectors, J. Funct. Analysis 272 (2017), 1017-1043. https://doi.org/10.1016/j.jfa.2016.11.001

G.M. Sklyar and V. Marchenko, Resolvent of the generator of the C0 -group with nonbasis family of eigenvectors and sharpness of the XYZ theorem, J. Spectr. Theory 11 (2021), 369–386. https://doi.org/10.4171/JST/344

G.M. Sklyar and V. Marchenko, Hardy inequality and the construction of the generator of the C0 -group with eigenvectors not forming a basis, Dopov. Nats. Akad. Nauk Ukr. 9 (2015), 13–17 (Ukrainian). https://doi.org/10.15407/dopovidi2015.09.013

G.M. Sklyar, V. Marchenko, and P. Polak, Sharp polynomial bounds for certain C0 -groups generated by operators with non-basis family of eigenvectors, J. Funct. Analysis 280 (2021), 108864. https://doi.org/10.1016/j.jfa.2020.108864

G.M. Sklyar and P. Polak, Asymptotic growth of solutions of neutral type systems, Appl. Math. Optim. 67 (2013), 453–477. https://doi.org/10.1007/s00245-013-9195-3

G.M. Sklyar and P. Polak, Notes on the asymptotic properties of some class of unbounded strongly continuous semigroups, J. Math. Phys. Anal. Geom. 15 (2019), 412–424. https://doi.org/10.15407/mag15.03.412

G.M. Sklyar and P. Polak, On asymptotic estimation of a discrete type C0 semigroups on dense sets: application to neutral type systems, Appl. Math. Optim. 75 (2017), 175–192. https://doi.org/10.1007/s00245-015-9327-z

G.Q. Xu and S.P. Yung, The expansion of a semigroup and a Riesz basis criterion, J. Differ, Equ. 210 (2005), 1–24. https://doi.org/10.1016/j.jde.2004.09.015

H. Zwart, Riesz basis for strongly continuous groups, J. Differ, Equ. 249 (2010), 2397–2408. https://doi.org/10.1016/j.jde.2010.07.020

Downloads

Як цитувати

(1)
Sklyar, G.; Marchenko, V.; Polak, P. One Class of Linearly Growing C0-Groups. Журн. мат. фіз. анал. геом. 2021, 17, 509-520.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають