Darboux Transformation for the Hirota Equation

Автор(и)

  • Halis Yilmaz School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK,
    Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey,
    Department of Mathematics, University of Dicle, 21280 Diyarbakir, Turkey

DOI:

https://doi.org/10.15407/mag18.01.136

Анотація

Рівняння Хіроти є інтегровним нелінійним рівнянням вищого порядку типу Шредінгера, яке описує поширення ультракоротких світлових імпульсів в оптичних волокнах. Ми представляємо стандартне перетворення Дарбу для рівняння Хіроти, а потім будуємо його квазідетермінантні розв'язки. В якості прикладів наведено мультисолітонні і бризерні розв'язки та розв'язки у вигляді поодиноких хвиль для рівняння Хіроти в явному вигляді.

Mathematics Subject Classification: 35C08, 35Q55, 37K10

Ключові слова:

рівняння Хіроти, перетворення Дарбу, квазідетермінантні розв'язки, мультисолітонні розв'язки, розв'язки у вигляді поодиноких хвиль

Посилання

G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007. https://doi.org/10.1016/B978-012369516-1/50011-X

N. Akhmediev, A. Ankiewicz, and M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A 373 (2009), 675–678. https://doi.org/10.1016/j.physleta.2009.04.023

A. Ankiewicz, J.M. Soto-Crespo, and N. Akhmediev, Rogue waves and rational solutions of the Hirota equation, Phys. Rev. E 81 (2010), 046602. https://doi.org/10.1103/PhysRevE.81.046602

D.J. Benney and A.C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys. 46 (1967), 133–139. https://doi.org/10.1002/sapm1967461133

D.J. Benney and G.J. Roskes, Wave instabilities, Stud. Appl. Math. 48 (1969), 377–385. https://doi.org/10.1002/sapm1969484377

H.H. Chen, Y.C. Lee, and C.S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Physica Scripta 20 (1979), 490–492. https://doi.org/10.1088/0031-8949/20/3-4/026

G. Darboux, Sur une proposition relative aux équations linéaires C. R. Acad. Sci. 94 (1882), 1456–1459.

I. Gelfand and V. Retakh, Determinants of the matrices over noncomutative rings, Funct. Anal. App. 25 (1991), 91–102. https://doi.org/10.1007/BF01079588

I. Gelfand, S. Gelfand, V. Retakh, and R.L. Wilson, Quasideterminants, Adv. Math. 193 (2005), 56–141. https://doi.org/10.1016/j.aim.2004.03.018

C.R. Gilson and J.J.C. Nimmo, On a direct approach to quasideterminant solutions of a noncommutative KP equation, J. Phys. A: Math. Theor. 40 (2007), 3839–3850. https://doi.org/10.1088/1751-8113/40/14/007

C.R. Gilson, M. Hamanaka, and S.C. Huang and J. J. C. Nimmo, Soliton Solutions of Noncommutative Anti-Self-Dual Yang–Mills Equations, J. Phys. A: Math. Theor. 53 (2020) 404002. https://doi.org/10.1088/1751-8121/aba72e

C.R. Gilson and S.R. Macfarlane, Dromion solutions of noncommutative Davey– Stewartson equations, J. Phys. A: Math. Theor. 42 (2009), 235232. https://doi.org/10.1088/1751-8113/42/23/235202

B.L. Guo, L.M. Ling, and Q.P. Liu, Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions, Phys. Rev. E 85 (2012), 026607. https://doi.org/10.1103/PhysRevE.85.026607

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion, Appl. Phys. Lett. 23 (1973), 142 . https://doi.org/10.1063/1.1654836

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres II. Normal dispersion, Appl. Phys. Lett. 23 (1973), 171. https://doi.org/10.1063/1.1654847

R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14 (1973), 805–809. https://doi.org/10.1063/1.1666400

D.J. Kaup and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978), 798–801. https://doi.org/10.1063/1.523737

Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, 2003. https://doi.org/10.1016/B978-012410590-4/50012-7

Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys. 39 (1985), 597–614. https://doi.org/10.1007/BF01008354

Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron. 23 (1987), 510–524. https://doi.org/10.1109/JQE.1987.1073392

C.X. Li and J.J.C. Nimmo, Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation, Proc. R. Soc. A 466 (2010), 2471–2493. https://doi.org/10.1098/rspa.2009.0647

L. Li, Z. Wu, L. Wang, and J. He, Higher-order rogue waves for the Hirota equation, Ann. Phys. 334 (2013), 198-211. https://doi.org/10.1016/j.aop.2013.04.004

B.A. Malomed and D. Mihalache, Nonlinear waves in optical and matter-wavemedia: A topical survey of recent theoretical and experimental results, Rom. J. Phys. 64 (2019), 106.

V.B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev– Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3 (1979), 213–216. https://doi.org/10.1007/BF00405295

V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. https://doi.org/10.1007/978-3-662-00922-2

D. Mihalache, N. Truta, and L.-C. Crasovan, Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term, Phys. Rev. E 56 (1997), 1064–1070. https://doi.org/10.1103/PhysRevE.56.1064

J.J.C. Nimmo, C.R. Gilson, and Y. Ohta, Applications of Darboux transformations to the self-dual Yang–Mills equations, Theor. Math. Phys. 122 (2000), 239–246. https://doi.org/10.1007/BF02551200

J.J.C. Nimmo and H. Yilmaz, On Darboux Transformations for the derivative nonlinear Schrödinger equation, J. Nonlinear Math. Phys. 21 (2014), 278–293. https://doi.org/10.1080/14029251.2014.905301

J.J.C. Nimmo and H. Yilmaz, Binary Darboux transformation for the Sasa–Satsuma equation, J. Phys. A: Math. Theor. 48 (2015), 425202. https://doi.org/10.1088/1751-8113/48/42/425202

D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. Ser. B 25 (1983), 16–43. https://doi.org/10.1017/S0334270000003891

H.W.A. Riaz, Noncommutative coupled complex modified Korteweg–de Vries equation: Darboux and binary Darboux transformations, Mod. Phys. Lett. A 34 (2019), 1950054. https://doi.org/10.1142/S0217732319500548

Y. Tao and J. He, Multisolitons, breathers and rogue waves for the Hirota equation generated by the Darboux transformation, Phys. Rev. E 85 (2012), 026601. https://doi.org/10.1103/PhysRevE.85.026601

N. Sasa and J. Satsuma, New type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan 60 (1991), 409–417. https://doi.org/10.1143/JPSJ.60.409

M. Wadati, The exact solution of the modified Korteweg–de Vries equation, J. Phys. Soc. Japan 32 (1972), 1681. https://doi.org/10.1143/JPSJ.32.1681

H. Wu, J. Liu, and C. Li, Quasideterminant solutions of the extended noncommutative Kadomtsev–Petviashvili hierarchy, Theor Math Phys 192 (2017), 982–999. https://doi.org/10.1134/S0040577917070042

Z. Yan and C. Dai, Optical rogue waves in the generalized inhomogeneous higherorder nonlinear Schrödinger equation with modulating coefficients, J. Opt. 15 (2013), 064012. https://doi.org/10.1088/2040-8978/15/6/064012

H. Yilmaz, Exact solutions of the Gerdjikov–Ivanov equation using Darboux transformations, J. Nonlinear Math. Phys. 22 (2015), 32–46. https://doi.org/10.1080/14029251.2015.996438

V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968), 190–194. https://doi.org/10.1007/BF00913182

V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972), 908–914.

V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69.

H.Q. Zhang, Y. Wang, and W.X. Ma, Binary Darboux transformation for the coupled Sasa–Satsuma equations, Chaos 27 (2017), 073102. https://doi.org/10.1063/1.4986807

Downloads

Як цитувати

(1)
Yilmaz, H. Darboux Transformation for the Hirota Equation. Журн. мат. фіз. анал. геом. 2022, 18, 136-152.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.