A Reilly Type Integral Formula Associated with Diffusion-Type Operators and Its Applications
DOI:
https://doi.org/10.15407/mag20.02.250Анотація
У цій статті ми виводимо формулу типу Рейлі для оператора дифузійного типу $\mathcal{L}\cdot=\frac{1}{B}\textrm{div}(A\nabla\cdot)$ на зважених многовидах із межею, де $A$ і $B$ - дві додатні гладкі функції на многовидах. В якості її застосування наведено деякі нерівності типу Пуанкаре, Колесанті, Мінковського та Хайнце-Карчера.
Mathematical Subject Classification 2020: 53C21, 58J32
Ключові слова:
формула типу Рейлi, оператор дифузiйного типу, m-модифiкована кривина Рiччi, A-середня кривинаПосилання
D. Bakry and M. Émery, Diffusion hypercontractives, Sém. Prob. XIX. Lect. Notes in Math. 1123 (1985), 177--206. https://doi.org/10.1007/BFb0075847
F. Du, J. Mao, Q. Wang, and C. Xia, Estimates for eigenvalues of weighted Laplacian and weighted $p$-Laplacian, Hiroshima Math. J. 51 (2021), No. 3, 335--353. https://doi.org/10.32917/h2020086
A. Freitas and M. Santos, Some Almost-Schur type inequalities for $k$-Bakry-Émery Ricci tensor, Differ. Geom. Appl. 66 (2019), 82--92. https://doi.org/10.1016/j.difgeo.2019.05.009
Q. Huang and Q. Ruan, Applications of some elliptic equations in Riemannian manifolds, J. Math. Anal. Appl. 409 (2014), No. 1, 189--196. https://doi.org/10.1016/j.jmaa.2013.07.004
G. Huang and B. Ma, Sharp bounds for the first nonzero Steklov eigenvalues for $f$-Laplacians, Turk. J. Math. 40 (2016), No. 4, 770--783. https://doi.org/10.3906/mat-1507-96
G. Huang and B. Ma, Eigenvalue estimates for submanifolds with bounded $f$-mean curvature, Proc. Indian Acad. Sci. Math. Sci. 127 (2017), 375--381. https://doi.org/10.1007/s12044-016-0308-1
G. Huang and Z. Li, Liouville type theorems of a nonlinear elliptic equation for the $V$-Laplacian, Anal. Math. Phys. 8 (2018), No. 1, 123--134. https://doi.org/10.1007/s13324-017-0168-6
G. Huang and M. Zhu, Some geometric inequalities on Riemannian manifolds associated with the generalized modified Ricci curvature, J. Math. Phys. 63 (2022), No. 11, 12 pp. https://doi.org/10.1063/5.0116994
A.V. Kolesnikov and E. Milman, Brascamp-Lieb type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017), No. 2, 1680--1702. https://doi.org/10.1007/s12220-016-9736-5
A.V. Kolesnikov and E. Milman, Poincaré and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math. 140 (2018), No. 5, 1147--1185. https://doi.org/10.1353/ajm.2018.0027
X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), No. 10, 1361--1995. https://doi.org/10.1016/j.matpur.2005.04.002
H. Li and Y. Wei, $f$-minimal surface and manifold with positive $m$-Bakry-Émery Ricci curvature, J. Geom. Anal. 25 (2015), 421--435. https://doi.org/10.1007/s12220-013-9434-5
L. Ma and S. Du, Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians, C. R. Math. Acad. Sci. Paris 348 (2010), No. 21-22, 1203--1206. https://doi.org/10.1016/j.crma.2010.10.003
P. Mastrolia and M. Rigoli, Diffusion-type operators, Liouville theorems and gradient estimates on complete manifolds, Nonlinear Anal. 72 (2010), No. 9-10, 3767--3785. https://doi.org/10.1016/j.na.2010.01.015
A.M. Ndiaye, About Bounds for eigenvalues of the Laplacian with density, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), 8 pp. https://doi.org/10.3842/SIGMA.2020.090
R.C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), No. 3, 459--472. https://doi.org/10.1512/iumj.1977.26.26036
G. Wei and W. Wylie, Comparison geometry for the Bakry-Émery Ricci tensor, J. Differ. Geom. 83 (2009), 377--405. https://doi.org/10.4310/jdg/1261495336
F. Zeng, Gradient estimates of a nonlinear elliptic equation for the $V$-Laplacian, Bull. Korean Math. Soc. 56 (2019), No. 4, 853--865.
F. Zeng, Gradient estimates for a nonlinear parabolic equation on complete smooth metric measure spaces, Mediterr. J. Math. 18 (2021), No. 4, 21 pp. https://doi.org/10.1007/s00009-021-01796-4
L. Zeng and H. Sun, Eigenvalues of the drifting Laplacian on smooth metric measure spaces, Pacific J. Math. 319 (2022), No. 2, 439--470. https://doi.org/10.2140/pjm.2022.319.439
Y. Zhu and Q. Chen, Some integral inequalities for ℒ operator and their applications on self-shrinkers, J. Math. Anal. Appl. 463 (2018), 645--658. https://doi.org/10.1016/j.jmaa.2018.03.038