Gradient Estimates and Harnack Inequalities of a Nonlinear Heat Equation for the Finsler-Laplacian
DOI:
https://doi.org/10.15407/mag17.04.521Анотація
Нехай $(M^{n}, F, m)$ є $n$-вимiрним компактним фiнслеровим многовидом. У цiй роботi ми вивчаємо нелiнiйне рiвняння теплопровiдностi
$$ \partial_{t}u=\Delta_{m} u\quad\text{on}\ M^n\times[0, T], $$
де $\Delta_{m}$ є фiнслеровим лапласiаном. Одержано градiєнтнi оцiнки типу Лi–Яу для позитивних глобальних розв’язкiв цього рiвняння на статичних фiнслерових многовидах, а також пiд дiєю потоку Фiнслера–Рiччi. Як наслiдок, в обох випадках також одержано вiдповiднi нерiвностi Гарнака.
Mathematics Subject Classification: 35K55, 53C21
Ключові слова:
градiєнтнi оцiнки Лi–Яу, нерiвнiсть Гарнака, нелiнiйне рiвняння теплопровiдностi, потiк Фiнслера–РiччiПосилання
S. Azami and A. Razavi, Existence and uniqueness for solutions of Ricci flow on Finsler manifolds, Int. J. Geom. Methods Mod. Phys. 10(2013), 21 pages. https://doi.org/10.1142/S0219887812500910
B. Bidabad and M. Yarahmadi, On quasi-Einstein Finsler spaces, Bull. Iranian Math. Soc. 40 (2014), 921–930.
D. Bao, S.S. Chern, and Z.M. Shen, An Introduction to Riemannian–Finsler Geometry, Grad. Texts in Math., 200, Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4612-1268-3
B. Bao and C. Robles, Ricci and Flag Curvatures in Finsler Geometry. A sampler of Riemann–Finsler geometry. Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004.
B. Bao, On two curvature-driven problems in Riemann–Finsler geometry, in Finsler Geometry: In memory of Makoto Matsumoto, Advanced Studies in Pure Mathematics, 48, Math. Soc., Japan, Tokyo, 2007, 19–71.
S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math. 28 (1975), 333–354. https://doi.org/10.1002/cpa.3160280303
M. Bailesteanu, X. D. Cao and A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal. 258(2010), 3517–3542. https://doi.org/10.1016/j.jfa.2009.12.003
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math, 92, Camb. Univ. Press, 1989. https://doi.org/10.1017/CBO9780511566158
R. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), 113–125. https://doi.org/10.4310/CAG.1993.v1.n1.a6
G.Y. Huang, Z.J. Huang, and H.Z. Li, Gradient estimates for the porous medium equations on Riemannian manifolds, J. Geom. Anal. 23 (2013), 1851–1875. https://doi.org/10.1007/s12220-011-9284-y
G.Y. Huang, Z.J. Huang, and H.Z. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Global Anal. Geom. 43 (2013), 209–232. https://doi.org/10.1007/s10455-012-9342-0
P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153–201. https://doi.org/10.1007/BF02399203
S. P. Liu, Gradient estimates for solutions of the heat equation under Ricci flow, Pacific J. Math. 243 (2009), 165–180. https://doi.org/10.2140/pjm.2009.243.165
J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), 233– 256. https://doi.org/10.1016/0022-1236(91)90110-Q
J. F. Li and X. J. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), 4456–4491. https://doi.org/10.1016/j.aim.2010.12.023
L. Ma, Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006), 374–382. https://doi.org/10.1016/j.jfa.2006.06.006
B.Q. Ma and F.Q. Zeng, Hamilton–Souplet–Zhang’s gradient estimates and Liouville theorems for a nonlinear parabolic equation, C. R. Math. Acad. Sci. Paris 356 (2018), 550–557. https://doi.org/10.1016/j.crma.2018.04.003
S. Ohta, Vanishing s-curvature of randers spaces, Differential Geom. Appl. 29 (2011), 174–178. https://doi.org/10.1016/j.difgeo.2010.12.007
S. Ohta and K.-T. Sturm, Bochner-Weitzenbock formula and Li–Yau estimates on Finsler manifolds, Adv. Math. 252 (2014), 429–448. https://doi.org/10.1016/j.aim.2013.10.018
S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386–1433. https://doi.org/10.1002/cpa.20273
S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211–249. https://doi.org/10.1007/s00526-009-0227-4
S. Lakzian, Differential Harnack estimates for positive solutions to heat equation under Finsler–Ricci flow, Pacific J. Math. 278 (2015), 447–462. https://doi.org/10.2140/pjm.2015.278.447
B. Qian, Remarks on differential Harnack inequalities, J. Math. Anal. Appl. 409 (2014), 556–566. https://doi.org/10.1016/j.jmaa.2013.07.043
J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math. 253 (2011), 489–510. https://doi.org/10.2140/pjm.2011.253.489
G.F. Wang and C. Xia, A sharp lower bound for the first eigenvalue on Finsler manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 983–996. https://doi.org/10.1016/j.anihpc.2012.12.008
Y.Y. Yang, Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc. 136 (2008), 4095–4102. https://doi.org/10.1090/S0002-9939-08-09336-2
C.J. Yu and F.F. Zhao, A note on Li-Yau-type gradient estimate, Acta Math. Sci. 39 (2019), 273–282. https://doi.org/10.1007/s10473-019-0420-2
S.T. Yin, Q. He, and Y.B. Shen, On the first eigenvalue of Finsler-Laplacian in a Finsler manifold with nonnegative weighted Ricci curvature, Sci. China Math. 57 (2014), 1057–1070. https://doi.org/10.1007/s11425-014-4804-4
S.T. Yin, Q. He, and D.X. Zheng, Some new lower bounds of the first eigenvalue on Finsler manifolds, Kodai Math. J. 39 (2016), 318–339. https://doi.org/10.2996/kmj/1467830140
F.Q. Zeng, Gradient estimates of a nonlinear elliptic equation for the V -Laplacian, Bull. Korean Math. Soc. 56 (2019), 853–865.
F.Q. Zeng and Q. He, Gradient estimates for a nonlinear heat equation under the Finsler–Ricci flow, Math. Slovaca 69 (2019), 409–424. https://doi.org/10.1515/ms-2017-0233