Transformation Operators and Modified Sobolev Spaces in Controllability Problems on a Half-Axis

Автор(и)

  • L. V. Fardigola B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

DOI:

https://doi.org/10.15407/mag12.01.017

Анотація

Розглянуто керовану систему $w_{tt}=\frac{1}{\rho}(kw_x)_x+\gamma w$, $w_x(0,t)=u(t)$, $x>0$, $t\in(0,T)$, у спеціальних модифікованих просторах соболєвського типу. Тут $\rho,k,\gamma$ - задані на $[0,+\infty)$ функції; $u\in L^\infty(0,\infty)$ - керування; $T>0$ - константа. Зростання розподілів із цих просторів залежить від зростання $\rho$ та $k$. За допомогою деяких операторів перетворення показано, що ця керована система відтворює властивості керованості допоміжної системи $z_{tt}=z_{\xi\xi}-q^2z$, $z_\xi(0,t)=v(t)$, $\xi>0$, $t\in(0,T)$, і навпаки. Тут $q\geq 0$ - константа, а $v\in L^\infty(0,\infty)$ - керування. Одержано необхідні та достатні умови $L^\infty$-керованості та наближеної $L^\infty$-керованості з уже відомих умов для допоміжної системи.

Mathematics Subject Classification: 93B05, 35B37, 35L05.

Ключові слова:

хвильове рівняння, піввісь, проблема керованості, оператор перетворення, модифікований простір соболєвського типу

Посилання

P. Antosik, J. Mikusiński, and R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam, 1973.

W.D. Bastos, A. Spezamiglio, and C.A. Raposo, On Exact Boundary Controllability for Linearly Coupled Wave Equations. — J. Math. Anal. Appl. 381 (2011), 557–564. https://doi.org/10.1016/j.jmaa.2011.02.074

M.I. Belishev and A.F. Vakulenko, On a Control Problem for the Wave Equation in R3 . — Zapiski Nauchnykh Seminarov POMI 332 (2006), 19–37. (Russian) (Engl. transl.: J. Math. Sci. 142 (2007), 2528–2539).

C. Castro, Exact Controllability of the 1-D Wave Equation from a Moving Interior Point. — ESAIM: Control, Optim. Calc. Var. 19 (2013), 301–316.

M. Dreher and I. Witt, Edge Sobolev Spaces and Weakly Hyperbolic Equations. — Ann. Mat. Pura Appl. 180 (2002), 451–482. https://doi.org/10.1007/s102310100023

A. Dutrifoy, S. Schochet, and A.J. Majda, A Simple Justification of the Singular Limit for Equatorial Shallow-Water Dynamics. — Comm. Pure Appl. Math. 62 (2009), 322–333. https://doi.org/10.1002/cpa.20248

J. Eckhardt, Direct and Inverse Spectral Theory of Singular Left-Defnite Sturm– Liouville Operators. — J. Differ. Eqs. 253 (2012), 604–634. https://doi.org/10.1016/j.jde.2012.04.006

F. Fanelli and E. Zuazua, Weak Observability Estimates for 1-D Wave Equations with Rough Coeffcients. Ann. Inst. H. Poincaré (C) Non Linear Analysis, doi:10.1016/j.anihpc.2013.10.004 https://doi.org/10.1016/j.anihpc.2013.10.004

L.V. Fardigola, On Controllability Problems for the Wave Equation on a Half-Plane. — J. Math. Phys., Anal., Geom. 1 (2005), 93–115.

L.V. Fardigola, Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant. — SIAM J. Control Optim. 47 (2008), 2179–2199. https://doi.org/10.1137/070684057

L.V. Fardigola, Neumann Boundary Control Problem for the String Equation on a Half-Axis. — Dopovidi Natsionalnoi Akademii Nauk Ukrainy 10 (2009), 36–41. (Ukrainian)

L.V. Fardigola, Controllability Problems for the 1-d Wave Equation on a Half-Axis with the Dirichlet Boundary Control. — ESAIM: Control, Optim. Calc. Var. 18 (2012), 748–773.

L.V. Fardigola, Controllability Problems for the 1-d Wave Equation on a Half-Axis with the Neumann Boundary Control. — Mathematical Control and Related Fields 3 (2013), 161–183.

L.V. Fardigola, Transformation Operators of the Sturm–Liouville Problem in Controllability Problems for the Wave Equation on a Half-Axis. — SIAM J. Control Optim. 51 (2013), 1781–1801. https://doi.org/10.1137/110858318

L.V. Fardigola, Transformation Operators in Controllability Problems for the Wave Equations with Variable Coefficients on a Half-Axis Controlled by the Diriclet Boundary Condition. — Mathematical Control and Related Fields 5 (2015), 31– 53. https://doi.org/10.3934/mcrf.2015.5.31

L.V. Fardigola, Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane. — J. Math. Phys., Anal., Geom. 11 (2015), 18–44.

L.V. Fardigola, Controllability Proplems for the Wave Equation on a Half-Plane and Modified Sobolev Spaces. — Dopovidi Natsionalnoi Akademii Nauk Ukrainy 9 (2019), 18-24. (Ukrainian)

L.V. Fardigola and K.S. Khalina, Controllability Problems for the Wave Equation. — Ukr. Mat. Zh. 59 (2007), 939–952. (Ukrainian) (Engl. transl.: Ukr. Math. J. 59 (2007), 1040–1058.)

G. Floridia, Approximate Controllabilty for Nonlinear Degenerate Parabolic Problems with Bilinear Control. — J. Differ. Eqs. 257 (2014), 3382–3422. https://doi.org/10.1016/j.jde.2014.06.016

V. Georgiev, S. Lucente, and G. Ziliotti, Decay Estimates for Hyperbolic Systems. — Hokkaido Mathematical Journal 33 (2004), 83–113. https://doi.org/10.14492/hokmj/1285766006

S.G. Gindikin and L.R. Volevich, Distributions and Convolution Equations. Gordon and Breach Sci. Publ., Philadelphia, 1992.

M. Gugat, A. Keimer, and G. Leugering, Optimal Distributed Control of the Wave Equation Subject to State Constraints. — ZAMM Angew. Math. Mech. 89 (2009), 420–444.

M. Gugat and J. Sokolowski, A Note on the Approximation of Dirichlet Boundary Control Problems for the Wave Equation on Curved Domains. — Appl. Analysis 92 (2012), 2200–2214.

M. Jaulent and C. Jean, One-Dimensional Inverse Schrödinger Scattering Problem with Energy-Dependent Potential, I, II. — Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 105–137.

M. Jaulent and C. Jean, Solution of a Schrödinger Inverse Scattering Problem with a Polynomial Spectral Dependence in the Potemtial. — J. Math. Phys. 23 (1982), 258–266.

F.A. Khalilov and E.Ya. Khruslov, Matrix Generalisation of the Modified Korteweg– de Vries Equation. — Inverse Problems 6 (1990), 193–204. https://doi.org/10.1088/0266-5611/6/2/004

K.S. Khalina, Boundary Controllability Problems for the Equation of Oscillation of an Inhomogeneous String on a Half-Axis. — Ukr. Mat. Zh. 64 (2012), 525– 541.(Ukrainian) (Engl. transl.: Ukr. Math. J. 64 (2012), 594–615.)

K.S. Khalina, On the Neumann Boundary Controllability for a Non-Homogeneous String on a Half-Axis. — J. Math. Phys., Anal., Geom. 8 (2012), 307–335.

K.S. Khalina, On Dirichlet Boundary Controllability for a Non-Homogeneous String on a Half-Axis. — Dopovidi Natsionalnoi Akademii Nauk Ukrainy 10 (2012), 24-29. (Ukrainian)

E.Ya. Khruslov, One-Dimensional Inverse Problems of Electrodynamics. — Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), 548–561. (Russian) https://doi.org/10.1016/0041-5553(85)90120-x

Y. Lui, Some Sufficient Conditions for the Controllability of the Wave Equation with Variable Coefficients. — Acta Appl. Math. 128 (2013), 181–191.

V.A. Marchenko, Sturm–Liouville Operators and Applications. AMS, Providence, RI, 2011.

Y. Privat, E. Trélat, and E. Zuazua, Optimal Location of Controllers for the OneDimensional Wave Equation. — Ann. Inst. Poincaré Anal Non Linéaire 30 (2013), 1097–1126. https://doi.org/10.1016/j.anihpc.2012.11.005

Ch. Seck, G. Bayili, A. Séne et M.T. Niane, Contrôlabilité Exacte de l’Équation des Ondes dans des Espaces de Sobolev non Réguliers pour un Ouvert Polygonal. — Afr. Mat. 23 (2012), 1–9. https://doi.org/10.1007/s13370-011-0001-6

M.A. Shubov, Spectral Decomposition Method for Controlled Damped String Reduction of Control Time. — Appl. Analysis 68 (3–8) (1998), 241–259.

G.M. Sklyar and L.V. Fardigola, The Markov Power Moment Problem in Problems of Controllability and Frequency Extinguishing for the Wave Equation on a HalfAxis. — J. Math. Anal. Appl. 267 (2002), 109–134.

E. Zerrik and R. Larhrissi, Regional Target Control of the Wave Equation. — International Journal of Systems Science 32 (2001), 1233–1242. https://doi.org/10.1080/00207720110035264

X. Zhang, A Unified Controllability/Observability Theory for Some Stochastic and Deterministic Partial Differential Equations. In: Proceedings of the International Congress of Mathematicians, Vol. IV, Hyderabad, India, 2010, pp. 3008–3034.

X. Zhang and Sh. Zheng, Strichartz Estimates and Local Wellposedness for the Schrödinger Equation with the Twisted Sub-Laplacian. Proceedings of the Centre for Mathematics & Its Applications at the Australian National University 44, 233243 (2010) http://works.bepress.com/shijun zheng/23.

E. Zuazua, Controllability and Observability of Partial Differential Equations: SomeResults and Open Problems. Handbook of Differential Equations: EvolutionaryEquations, Vol. 3. Elsevier Science, 2006.

Downloads

Як цитувати

(1)
Fardigola, L. V. Transformation Operators and Modified Sobolev Spaces in Controllability Problems on a Half-Axis. Журн. мат. фіз. анал. геом. 2016, 12, 17-47.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.