Simple Periodic Boundary Data and Riemann-Hilbert Problem for Integrable Model of the Stimulated Raman Scattering

Автор(и)

  • E. A. Moskovchenko B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine

Анотація

We consider the initial-boundary value (IBV) problem for nonlinear equations related to the integrable model of the stimulated Raman scattering in the quarter $xt$-plane with vanishing at infinity initial conditions and single- frequency periodic boundary data $(pe^{i\omega t})$. We propose a matrix Riemann- Hilbert problem, which provides the existence of the solution of the IBV problem for all $t$ and allows us to obtain an explicit formula for the asymptotics of the solution, using the steepest descent method for the oscillatory matrix RH problem introduced by P. Deift and X. Zhou [6].

Mathematics Subject Classification: 37K15, 35Q15, 35B40.

Ключові слова:

nonlinear equations, Riemann-Hilbert problem, the steepest descent method, asymptotics

Downloads

Як цитувати

(1)
Moskovchenko, E. A. Simple Periodic Boundary Data and Riemann-Hilbert Problem for Integrable Model of the Stimulated Raman Scattering. Журн. мат. фіз. анал. геом. 2009, 5, 82-103.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.