Long-Time Asymptotic Behavior of an Integrable Model of the Stimulated Raman Scattering with Periodic Boundary Data
Анотація
The long-time asymptotic behavior of the initial-boundary value (IBV) problem in the quarter plane $(x>0, t>0)$ for nonlinear integrable equations of the stimulated Raman scattering is studied. Considered is the case of zero initial condition and single-phase boundary data $(pe^{i\omega t})$. By using the steepest descent method for oscillatory matrix Riemann-Hilbert problems it is shown that the solution of the IBV problem has different asymptotic behavior in different regions, namely:
- $\;$ the selfsimilar vanishing (as $t\to \infty$) wave, when $x>\omega^2 t$;
- $\;$ the modulated elliptic wave of finite amplitude, when $\omega_0^2 t<x<\omega^2 t$;
- $\;$ the plane wave of finite amplitude, when $0<x<\omega_0^2 t$.
The similar results are true for the same IBV problem with nonzero initial condition vanishing as $t\to\infty$.
Mathematics Subject Classification: 37K15, 35Q15, 35B40.
Ключові слова:
nonlinear equations, Riemann-Hilbert problem, asymptoticsDownloads
Як цитувати
(1)
Moskovchenko, E. A.; Kotlyarov, V. P. Long-Time Asymptotic Behavior of an Integrable Model of the Stimulated Raman Scattering with Periodic Boundary Data. Журн. мат. фіз. анал. геом. 2009, 5, 386-395.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.