On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
Анотація
A perturbation of the Poisson equation by a biharmonic operator with a small multiplier $\varepsilon$ is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as $\varepsilon\to 0$ is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poisson equation in $L_1(\Omega)$ as $\varepsilon\to 0$. The difference of the gradients is also estimated.
Mathematics Subject Classification: 35B25, 35J05, 35J75, 35J40.
Ключові слова:
singular perturbation, elliptical equations, the Green functionsDownloads
Як цитувати
(1)
Anoshchenko, O.; Lysenko, O.; Khruslov, E. On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems. Журн. мат. фіз. анал. геом. 2009, 5, 115-122.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.